PIZiadas gráficas

PIZiadas gráficas

Mi mundo es la imagen.

Categorías Sistemas de representación

Sistema Diédrico: Distancia de un punto a un plano

Podemos definir la distancia de un punto P a un plano α como la menor de las distancias desde el punto P a los infinitos puntos del plano α. Para determinar esta distancia deberemos obtener la recta perpendicular al plano α desde el punto P y obtener su punto I de intersección. La distancia de P a I será la mínima distancia al plano α.

Recta perpendicular a un plano

Uno de los problemas básicos que debemos aprender al estudiar los Sistemas de Representación son aquellos en los que aparecen elementos que son perpendiculares a otros. Todos los problemas de determinación de distancias hacen uso de estos conceptos.

Veamos cómo determinar la recta perpendicular a un plano en Sistema Diédrico trabajando directamente en las proyecciones principales del sistema.

Línea de máxima pendiente

Al estudiar la verdadera magnitud de una recta vimos que podíamos calcular a su vez el ángulo de esta recta respecto de un plano de proyección, es decir, su pendiente.

En un plano podemos determinar infinitas rectas con diferente dirección contenidas en el mismo. Una de estas rectas formará la máxima condición angular respecto del plano de proyección.

El problema del tapón con tres formas

Uno de los primeros problemas que planteo en mis clases es el que denomino “El tapón con tres formas”.

Sirve de introducción a la geometría descriptiva y obliga a hacer un análisis espacial de gran interés para la formación de los alumnos.

El problema consiste en determinar un tapón que sirva para tapar tres agujeros que hemos realizado en una caja de madera.

Sistema Diédrico: Rectas de un plano paralelas a los de proyección

Dentro de la categoría denominada “rectas notables” del plano se encuentran las que son paralelas a los planos de proyección diédricos. Estas rectas son de gran utilidad en la operatividad que vamos a desarrollar en este sistema de representación.

Sistema Diédrico: Teorema de las tres perpendiculares

Uno de los teoremas más importantes de la geometría descriptiva es el denominado “Teorema de las tres perpendiculares”, que establece una relación entre dos rectas perpendiculares cuando una de ellas es paralela a un plano de proyección.

Sistema Diédrico: Proyección de puntos del plano

¿Sabrías obtener a partir una proyección de un punto perteneciente a un plano otra proyección sobre el plano diédrico que la completa? Por ejemplo, si nos dan la proyección horizontal y la vertical de un plano y un punto en esta última ¿Cómo determinaríamos la proyección sobre el plano horizontal?

Sistema Diédrico: Proyección del plano

Un plano queda determinado por tres puntos no alineados, por lo que añadiendo un nuevo punto a las proyecciones de una recta podremos definirlo. En este caso podremos dar al menos dos cotas relativas sobre cada plano de proyección con objeto de independizar las proyecciones de dichos planos soporte de la representación. Aprenderemos a representar planos y elementos que los pertenezcan.

Intersecciones en perspectivas: recta y ortoedros

Uno de los problemas clásicos de los sistemas de representación consiste en encontrar la intersección de dos elementos, como por ejemplo determinar el punto de intersección entre una recta y un plano. Son problemas de naturaleza topológica en los que priman los conceptos de pertenencia.

Los problemas que se basan en relaciones topológicas son independientes del tipo de proyección en que se encuentren.

Sistema Diédrico: Verdadera magnitud de la recta

Al proyectar una recta ortogonalmente sobre un plano de proyección, su proyección, en general, es más pequeña que la medida original.

Dada una recta (segmento limitado por dos puntos) queremos determinar su verdadera magnitud así como el ángulo que forma con los planos de proyección.

Sistema Diédrico: Tercera proyección de la recta

Las proyecciones principales de la recta sobre dos planos diédricos (planos horizontal y vertical) permiten determinar otras proyecciones ortogonales sobre nuevos planos.

Veremos cómo determinar de forma genérica una nueva proyección a partir de otras dos. Más adelante analizaremos su aplicación al estudiar las denominadas “proyecciones auxiliares”, incidiendo en su utilidad en la resolución de diferentes problemas.