PIZiadas graphiques

PIZiadas graphiques

Mon monde est po.

Géométrie métrique et projective : Théorème de Thalès

L'un des principaux théorèmes géométrie métrique est la déclaration faite par Thalès de Milet. Avec Théorème de Pythagore établir les fondements de la géométrie métrique et projective axiomatiques.

Thalès de Milet

Thalès de Milet (en Griego Thalès de Milet) (comme. 630 – 545 à. C ) était l'initiateur de l'enquête rationnelle de l'univers. Il est considéré comme le premier philosophe dans l'histoire de la philosophie occidentale, et a été le fondateur de l'école ionienne de philosophie, selon le témoignage d'Aristote. Il a été le premier et le plus célèbre des Sept Sages de la Grèce (le savant astronome), et aurait, selon une ancienne tradition ne sais pas, disciple et protégé comme Pythagore.

Il fut aussi l'un des plus grands mathématiciens de son temps, concentrant ses principales contributions dans les fondements de la géométrie.(W)

Déclaration du premier théorème de Thalès

Le Théorème de Thalès ensembles notion de similarité entre les deux triangles relatifs la longueur de deux côtés. Définir un invariant projectif s'applique aux systèmes de projection cylindrique: Le simple raison.

Si les deux lignes coupées par plusieurs lignes parallèles,segments correspondants sont proportionnels à la fois,à savoir, correspondre à égaler ,en addition et la soustraction dans.

Teorema_Thales

Théorème de Thalès

Si un triangle est une droite parallèle à chaque côté, vous obtenez deux triangles similaire.(W)

Le théorème suivant énonce l'égalité entre les ratios des deux côtés correspondants de deux triangles semblables:

  • m / n = m '/ n'
  • m / n = (m m ')/(n n ')
  • n / p = (n n ')/p '

Applications: Scales

La notion de similarité est associée à l'échelle. Deux formes similaires (De même taille mais différent) seulement varier en représentation à l'échelle.

Le échelle est la relation mathématique entre les dimensions réelles du dessin et constitue en réalité un plan ou une carte.(W)

Échelle = Mesure linéaire dans le dessin / linéaire mesure du réel

E = D / R

Par exemple, Barème E = 3/4 indique que 4 unités de mesure du réel, nous 3 sur le dessin.

Les éléments qui forment une échelle graphique.

Une échelle construite sur une support rectiligne. Chaque pièce numérotée est appelé Module. La partie qui reste de zéro est appelée contraescala.

escala

Des éléments de liaison

Construction de Scales

À titre d'exemple d'application suppose que nous voulons construire l'échelle 7/9.

Titulaire utilisera une longue rectiligne 7 unités représentent des mesures et un dessin de ligne auxiliaire de neuf unités de longueur fixée à une extrémité de ce qui précède, qui représente la mesure de la réalité.

Réunir les deux extrémités libres des deux lignes de traçage et aller rectiligne parallèle à celle-ci pour chacune des unités de la ligne auxiliaire.

Ejemplo_construccion_escala

Exemple de construction échelle 7/9

Entraînement

Les exercices suivants peuvent percer et ancrer les concepts abordés qui seront essentielles pour, plus tard, comprendre que nous allons utiliser dans les systèmes de représentation invariants projectifs.

 

1-.Diviser un segment s = AB parties proportionnelles autres, b, c .

 

ej1

 

2-.Si a/b= c/x, Salle segment de x ,quatrième proportionnelles trois segments, b, c données.

 

ej2

 

3-.Si a/b = b/x. Salle segment de x ,Troisième segments proportionnels de la, b données.

 

ej3

 

4-.Hallar segments X et Y, connu leur somme s et la différence d.

 

ej4

 

ej5

 

5-.Dans la figure ci-dessous est remplie:

Indiquez si la relation est vraie (V) ou fausse (F) dans chaque cas,

 

  • V F AD . AE = AB . BC
  • V F AD / BC = AB / DE
  • V F AB . DE = AD . BC

 

ej6

 

6-.Dans la figure ci-dessous est remplie:

Indiquez si la relation est vraie (V) ou fausse (F) dans chaque cas,

  • V F MN / NR = l' . QR
  • V F MN . QR = MR . QP
  • V F PR / RN = QR / RM

 

ej7

 

7.- Compte tenu d'un segment m, déterminer deux segments p y q sachant que:

  • m = q + p
  • p / q = 2/3

 

ej8

 

8.- Compte tenu d'un segment m, déterminer deux segments p y q sachant que:

  • m = q – p
  • p / q = 2/3
Sistemas_de_representacion

Sistemas_de_representacion

Géométrie métrique

La géométrie projective