PIZiadas gráficas

PIZiadas gráficas

Mi mundo es la imagen.

Categorías Sistemas

Sistema diédrico: Fundamentos de las Proyecciones auxiliares, cambios de plano

Para representar un objeto en el sistema diédrico normalmente usaremos la proyecciones sobre los tres planos del triedro de referencia, tal y como hemos visto al estudiar los fundamentos del sistema diédrico.

En general será suficiente con utilizar únicamente dos de los tres posibles planos, quedando representada por ejemplo una recta mediante sus proyecciones sobre el plano horizontal y el vertical. En ocasiones puede ser conveniente, o incluso necesario, obtener nuevas proyecciones según diferentes direcciones de proyección, en cuyo caso las llamaramos “proyecciones auxiliares” .

Sistema Diédrico: Distancia de un punto a un plano

Podemos definir la distancia de un punto P a un plano α como la menor de las distancias desde el punto P a los infinitos puntos del plano α. Para determinar esta distancia deberemos obtener la recta perpendicular al plano α desde el punto P y obtener su punto I de intersección. La distancia de P a I será la mínima distancia al plano α.

Recta perpendicular a un plano

Uno de los problemas básicos que debemos aprender al estudiar los Sistemas de Representación son aquellos en los que aparecen elementos que son perpendiculares a otros. Todos los problemas de determinación de distancias hacen uso de estos conceptos.

Veamos cómo determinar la recta perpendicular a un plano en Sistema Diédrico trabajando directamente en las proyecciones principales del sistema.

Línea de máxima pendiente

Al estudiar la verdadera magnitud de una recta vimos que podíamos calcular a su vez el ángulo de esta recta respecto de un plano de proyección, es decir, su pendiente.

En un plano podemos determinar infinitas rectas con diferente dirección contenidas en el mismo. Una de estas rectas formará la máxima condición angular respecto del plano de proyección.

Sistema Diédrico: Rectas de un plano paralelas a los de proyección

Dentro de la categoría denominada “rectas notables” del plano se encuentran las que son paralelas a los planos de proyección diédricos. Estas rectas son de gran utilidad en la operatividad que vamos a desarrollar en este sistema de representación.

Sistema Diédrico: Teorema de las tres perpendiculares

Uno de los teoremas más importantes de la geometría descriptiva es el denominado “Teorema de las tres perpendiculares”, que establece una relación entre dos rectas perpendiculares cuando una de ellas es paralela a un plano de proyección.

Sistema Diédrico: Proyección de puntos del plano

¿Sabrías obtener a partir una proyección de un punto perteneciente a un plano otra proyección sobre el plano diédrico que la completa? Por ejemplo, si nos dan la proyección horizontal y la vertical de un plano y un punto en esta última ¿Cómo determinaríamos la proyección sobre el plano horizontal?

Sistema Diédrico: Proyección del plano

Un plano queda determinado por tres puntos no alineados, por lo que añadiendo un nuevo punto a las proyecciones de una recta podremos definirlo. En este caso podremos dar al menos dos cotas relativas sobre cada plano de proyección con objeto de independizar las proyecciones de dichos planos soporte de la representación. Aprenderemos a representar planos y elementos que los pertenezcan.

Sistema Diédrico: Verdadera magnitud de la recta

Al proyectar una recta ortogonalmente sobre un plano de proyección, su proyección, en general, es más pequeña que la medida original.

Dada una recta (segmento limitado por dos puntos) queremos determinar su verdadera magnitud así como el ángulo que forma con los planos de proyección.

Sistema Diédrico: Tercera proyección de la recta

Las proyecciones principales de la recta sobre dos planos diédricos (planos horizontal y vertical) permiten determinar otras proyecciones ortogonales sobre nuevos planos.

Veremos cómo determinar de forma genérica una nueva proyección a partir de otras dos. Más adelante analizaremos su aplicación al estudiar las denominadas “proyecciones auxiliares”, incidiendo en su utilidad en la resolución de diferentes problemas.

Sistema Diédrico: Proyección de la recta

Después de ver los fundamentos del Sistema Diédrico, con la proyección de un punto sobre dos planos de proyección ortogonales, vamos a ver cómo se puede independizar el sistema de la línea de tierra en cuanto tenemos dos o más puntos. Este sistema denominado “Sistema Libre” es más flexible que el tradicional debido a Monge, dando relevancia a las líneas de referencia y orientando el modelo hacia una geometría espacial más conceptual y menos constructivista.