그래프 PIZiadas

그래프 PIZiadas

내 세계가 속한.

Categorías Métrica

투자: 각 조건 요소 결정 표 정신 체조

우리는 이미 하나를 사용했습니다 “정신체조대” 투자 공부할 때: 추론을 자극하는 일련의 연습, 민첩한 마음을 개발하고 유지하십시오, 계산 및 분석 프로세스 등을 자동화합니다..

이제 우리는 유사한 일련의 문제를 제기할 것을 제안하지만 기본 기하학 문제에 대한 해결책을 얻는 것을 목표로 합니다.. 이 경우 우리는 주어진 점을 통과하고 다른 두 원에 대한 각도 조건을 충족하는 원에 대한 검색을 고려할 것입니다..

학습 과정 미터 기하학

과학 연구에 접근할 때 우리는 학습으로 이어지는 다양한 궤적을 따를 수 있습니다.. 서로 연결 개념을 체인으로 연결하는 것은 우리가 추상적 인 패턴의 정신적 표현을 생성 할 수 있습니다, 문제 해결에 자신의 동화 이후 응용 프로그램을 촉진.
이 페이지에서 가능한 전략이나 학생들의 교육에서 과학이 분기의 기초의 점진적 통합의 순서를 요약 두 이미지는 제안.

아폴로의 문제 : CCC

변형 중 하나를 줄일 수있다 이름에 포함 "Apolonio 문제"하는 접선의 문제의 모든 그들 모두의 가장 기본적인 공부: tangencies의 근본 문제 (PFT).

이 경우 우리는 우리가 "Apolonio 사례 CCC"라고 부릅니다 공부한다, 즉, 데이터 조건에 의해 부여되는 접선의 문제를 세 원주 접선하면 (CCC).

투자: 표 정신 체조 처리 소자

무엇 것은 정신 체조의 테이블? 우리는 그 이유를 자극하는 역할을 운동의 집합입니다 말할 수 있습니다, 민첩한 마음을 개발하고 유지하십시오, 계산 및 분석 프로세스 등을 자동화합니다..
기하학의 주제에서 우리는 문제를 제안 할 수 있으며, 데이터의에 약간의 변형을. 다양성의 문제는 관심의 하나 또는 그 이상의 개념을 강조하는 운동의 패밀리를 작성합니다.

포인트를 반전. 10 얻기위한 구조물 [나는- 메트릭]

난 항상 내 학생들을 하나 개의 권장 사항은 다른 방식으로 같은 문제를 해결하는 것입니다, 거의 유사한 진술로 동일한 문제를 여러 번 수행하는 대신.

Veremos un problema con enfoques métricos o proyectivos en cada caso.

지난 수업 중 하나에서 우리는 점의 역함수를 얻는 것을 제안했습니다., 중심과 거듭제곱이 알려진 역전에서. 제안된 성명은 다음과 같았습니다:

그림의 제곱이 주어지면, 꼭지점 중 하나가 반전 중심이고 반대쪽 꼭지점이 이중 점인 경우, 점 A의 역수를 결정 (인접한 꼭지점).

원뿔 메트릭: 머리 둘레

머리 둘레

Hemos definido la elipse como ellugar geométrico de centros de circunferencias que, pasando por un foco, 다른 초점의 중심과 초점원에 접해 있습니다.”.

이 정의를 통해 우리는 접선 문제를 풀 때 나타나는 개념을 적용하여 원뿔형 연구에 접근할 수 있습니다., 특히, 그것들을 접선의 근본적인 문제로 축소.

우리는 이 원을 반경이 초점 반경의 절반인 다른 원과 연관시킬 것입니다., 그리고 그 중심은 원뿔형의 중심입니다. 우리는 이것을 원주라고 부르겠습니다. “머리 둘레”.

로커스 센터 원주 접선으로 원뿔 곡선 (이차 곡선)

우리는 원뿔형 연구가 다양한 기하학적 접근 방식으로 수행될 수 있음을 확인했습니다.. 특히, 원뿔 분석을 시작할 때 타원을 기하학적 궤적으로 정의했습니다., 우리는 그렇게 말했다:

타원은 두 개의 고정된 점까지의 거리의 합이 있는 평면 점의 기하학적 자취입니다., Focus라고 불리는, 일정한 값을 갖는다.

이 중요한 곡선에 대한 미터법 정의를 통해 접선 원의 곡선과 관련시켜 연구에 접근할 수 있습니다., 로 알려진 “아폴로 니 오 스의 문제” 일부 버전에서는. 포물선이나 쌍곡선 연구에 접근할 때, 우리는 이러한 개념을 일반화하고 문제를 다음과 같이 축소하기 위해 문제를 다시 언급할 것입니다. “직선의 경우 접선의 근본적인 문제”, 또는 “원주 경우의 접선의 근본적인 문제”, 즉, 원주 결정 “위험 지역” 접선 조건이 있는 경우.

메트릭 형상 : 투자 빔 원주

La transformación mediante inversión de elementos agrupados en formas geométricas puede tener interés para usar la inversión como herramienta de análisis en problemas complejos. En este caso estudiaremos la transformación de loshaces de circunferencias corradicalesmediante diferentes inversiones que los transformen. 이후 이러한 변환 문제를 해결하기 위해 필요 “아폴로 니 오 스” (세 접선 제약 둘레) 또는 “아폴로의 문제의 일반화” (세 가지 각도 제한 원주).

GeoGebra의 동적 기하 구조의 견고성: 원의 포인트의 극성

고전 기하학 분야의 연구는 동적으로 변경 될 수있는 구성을 할 수있는 도구를 이용하여 보강 될 수있다: 변분 구조.
도구 “브라” 그것은 우리가 기하학적 추론에서 사용하는 건물의 견고성을 보장하기 위해이 개념을 설명하고 기하학적 관계의 상세한 지식의 중요성을 설명하는 역할을합니다, ya que, 때때로, 일부 구조물은 타당성을 잃을 수 있습니다.

삼각형의 기하학 [Problema]

Hemos visto al estudiar el concepto de potencia o los teoremas del cateto y de la altura relaciones métricas entre segmentos.

En estas relaciones, junto con las del Teorema de Pitágoras se relacionan segmentos mediante formas cuadráticas que también podemos interpretar como áreas (producto de dos longitudes)