사영 기하학: 2 차 중복 보의 응용
당신은 두 번째 순서의 겹치는 공부 하 고 개발 했습니다 투영 개념, 그 자료는 원뿔은, 그들은 5 탄젠트 또는 탄젠트 및 그들의 각각 접선 포인트의 결합을 통해 5 개 제한에 의해 정의 된 원추형의 측면에 접촉의 점 결정의 문제를 해결 하기 위해 허용. 우리는이 유형의 문제에서 Brianchon 포인트의 구현 볼
당신은 두 번째 순서의 겹치는 공부 하 고 개발 했습니다 투영 개념, 그 자료는 원뿔은, 그들은 5 탄젠트 또는 탄젠트 및 그들의 각각 접선 포인트의 결합을 통해 5 개 제한에 의해 정의 된 원추형의 측면에 접촉의 점 결정의 문제를 해결 하기 위해 허용. 우리는이 유형의 문제에서 Brianchon 포인트의 구현 볼
접선 원추형 공부 하기, 특히 두 번째 순서의 광선 사이 proyectividades 같은 곡선에 첨가 하 고, 우리는 성취의 이중 연구에 의존 수 있습니다 시리즈의 두 번째 순서를 겹치는.
우리가 두 번째 순서의 겹치는 시리즈 공부 하 개발한 투영 개념, 그 자료는 원뿔은, 그들은 5 점 또는 탄젠트의 그들의 각각 포인트와 포인트 및 접선의 결합을 통해 5 개 제한에 의해 정의 된 원추형의 탄젠트 점의 결정의 문제를 해결 하기 위해 허용.
응용 프로그램 “브라” 동적 구조물에 그것을 형성 하는 요소의 위치를 수정할 수 있습니다. 개발할 수 있습니다., 이 숫자의 기하학적 구속 조건 유지, 동일한 쇼의 고정 허용. 이 도구는 학생 들을 위한 귀중 한 도움이 될 수 있습니다..
교수 Juan Alonso Alriols의 가르침에이 도구의 도입에 협력 “Expresión Gráfica” 마드리드의 폴 리 테크닉 대학에서, 높은 관심에 대 한 예제를 제공 하. 그의 작품의 예를 볼 수 있는 “4 포인트에 대 한 두 번 이유의 동적 건설” 이 항목을 동반, 그 클래스에 사용 하기 위해 드라이버 텍스트 추가.
우리는 보았다 요소의 순서가 상관의 정의, 직선 특성화 일부 4 점 또는 비행기 값 이나 특성을 통해 번들에서 4 개의 직선, 이러한 요소에 의해 결정 두 triads의 비율에 대 한 결과.
다음의 문제를 생각 하는 우리, 같은 형태의 첫 번째 범주에 속하는 세 가지 요소를 부여, 시리즈 또는 빔, Tetrad 특정 값을 결정 하는 네 번째 요소를 얻을.
우리는 사영 기하학에서 일을 배워야 첫 번째 문제 중 하나는 동종 요소의 결정입니다, 시리즈 및 번들에있는 염기의 조항에 모두, 또는 분리가 중첩.
사용되는 방법론의 연구를 계속 진행하면 이중 모델보기 기반 요소를 사용 “포인트”, 직선과 예, 또한 각각의 빔의 기초가 분리되어 있음을 관련시킬 가정.
La definición proyectiva de la cónica permite empezar a resolver problemas clásicos de determinación de nuevos elementos de la cónica (nuevos puntos y tangentes en ellos), así como encontrar la intersección con una recta o la tangente desde un punto exterior. Estos problemas pueden resolverse por diferentes métodos más o menos complejos conceptualmente y con trazados más o menos laboriosos.
Veremos a continuación cómo determinar los dos posibles puntos de intersección de una recta con una cónica definida por cinco puntos.
사영 겹치는 모양 투영 모양의 특별한 경우입니다, 는 공통베이스를 공유하는 동일한 유형의 요소 관해서.
예를 들면, 겹치는 두 시리즈는 기하학적 인 도형의 기초와 같은 줄이있을 것이다, 같은 정점 직선의 두 빔 (동심 번들) 과 동일한 축을 중심으로 평면 중첩이 빔 (coaxiales).
원은 원뿔 축이 길이가 동일하다, 따라서 우리는 그것의 편심이 제로라고 말할 수 있습니다 (편심 = 0). 우리는 두 번째 순서의 하나의 시리즈로 원을 처리 할 수 있습니다, 광선 합동 대응의 두 빔의 교차에 의해 얻어진 (동일하지만 회전.) 이 치료는 투영 도구로 사용하고 동심 시리즈 겹치는 두 요소의 결정을 해결 할 도움이 될 것입니다.
우리는 사영 기하학에서 일을 배워야 첫 번째 문제 중 하나는 동종 요소의 결정입니다. 이 연구는 일반적인 모델 기반의 요소로 사용하는 방법을 사용합니다 시작하려면 “포인트”, 그것은 쉽게 해석 할 수 있기 때문에. 그러므로 우리는 시리즈의 투영에 일치하는 요소의 결정을 고려할 것:
요소 삼쌍에 의해 정의 된 두 개의 투영 시리즈를 감안할 때 (포인트) 대응, 특정 시점의 대응을 결정.
원뿔 곡선 (이차 곡선) 곡선, 접선의 개념에 기초하여 메트릭의 추가 처리, 세트와 투영 번들의 개념에 의존하는 투영 치료를.
우리는 적응 원뿔 곡선 (이차 곡선)의 두 가지 정의를 볼 수 있습니다 “세계 지점” 오 알 “직선의 세계” 관심에 따라, 정의로 정의됩니다 무엇에 “포인트” o “접선의” 원뿔 곡선.