PIZiadas图形

PIZiadas图形

我的世界是英寸.

度量几何 : 阿科段上能够

La relación entre el ángulo inscrito y el ángulo central en una circunferencia permite obtener un lugar geométrico de gran importancia por sus numerosas aplicaciones en la geometría métrica; este lugar geométrico se denomina 电弧能.

angulo inscrito arco capaz

Los puntos de una circunferencia que son vértices de triángulos cuya base común es una cuerda de la circunferencia tienen la propiedad de tener asociado en ese vértice un mismo ángulo, que se corresponde con la mitad del ángulo central que abarca dicha base.

Esta propiedad permite enunciar la definición del lugar geométrico denominado 阿科段上能够.

Arco capaz de un segmento AB visto bajo un ángulo α dado es el lugar geométrico de los puntos del plano desde los cuales se ve el segmento AB bajo el mismo ángulo α.

Construcción del arco capaz

El punto P observa al segmento AB (cuerda de la circunferencia) bajo un determinado ángulo (阿尔法). Al desplazarse sobre dicha circunferencia el ángulo permanece invariante.

Los segmentos PA y PB varian por tanto en longitud, pero no el ángulo que forman. Este concepto permite determinar una construcción elemental para, dado el segmento AB y el ángulo alfa, determinar el centro de la circunferencia descrita.

Si el punto P se desplaza hasta coincidir con el punto B, el segmento AP se convierte en el AB, y el segmento BP se convierte en la tangente a la circunferencia, por lo que la tangente en B forma alfa grados con el segmento AB.

La tangente y el radio que pasa por el punto de contacto son ortogonales

Para construir el arco capaz, o determinar la circunferencia, simplemente determinaremos su centro como intersección de la mediatriz de AB con la recta perpendicular a la tangente en B (que determinaremos previamente)

Construccion arco capaz

Construcción del arco capaz

El arco capaz de 90 grados es una semicircunferencia.

Aplicaciones del arco capaz

Además de ser usado para resolver problemas de lugares geométricos, tiene especial utilidad como herramienta para demostrar teoremas clásicos de la geometría métrica.

Aplicación a construcciones geométricas

El arco capaz de mayor interés es el de 90 度, 亦即, el del ángulo recto. Este lugar geométrico es de gran uso en la resolución de problemas básicos de tangencias y posteriormente se usará en relaciones armónicas.
Como la tangente y el radio que pasa por el punto de contacto son ortogonales, podemos usar el arco capaz de 90 grados para determinar la tangente desde un punto a una circunferencia. Simplemente determinaremos un arco capaz (semicircunferencia) entre el punto desde el que queremos trazar la tangente y el centro C de la circunferencia a la que debe ser tangente la recta. El punto T de intersección será el punto de tangencia buscado.

tangente a circunferencia desde un punto

tangente a una circunferencia

Aplicación en demostraciones

Las demostraciones de teoremas en las que aparecen ángulos rectos son en las que el arco capaz de 90 grados tiene aplicación inmediata. 例如, un teorema clásico es:

El ortocentro de un triángulo es el incentro de su triángulo órtico.

El ortocentro es el punto de intersección de las alturas del triángulo ABC, rectas que pasan por un vértice y por el pie de la perpendicular al lado opuesto (ħ). Este punto se encuentra por tanto en la intersección de dos arcos capaces.

El triángulo órtico es el que pasa por los pies de las alturas, y su incentro es el punto de intersección de las bisectrices.

A partir de la figura se puede deducir el teorema anterior, simplemente demostrando que los ángulos marcados son iguales al estar en arcos capaces sobre un mismo segmento en las diferentes circunferencias que se muestran.

Ortocentro_Incentro

Demostración de un teorema gráficamente

训练

1-.Determinar un punto P en el interior del triángulo dado, desde el cual se vean sus tres lados bajo el mismo ángulo. (问题)

triangulo

triangulo

2-.Dado un punto P y una recta r, situados a una distancia de 38mm, dibujar un ángulo de 45º con vértice en P que intercepte en r un segmento de 30mm. De forma genérica situar dos rectas que pasen por P formando un ángulo alfa, que intersecte a la recta R según un segmento de longitud L. (问题)

ejemplo_arco_capaz


3.- Construir un triángulo conocido un lado , su ángulo opuesto y una tercera condición.

Datos (Lado c, 一, Ángulo A).

Incógnita (Construir triángulo ABC)

construir_triangulo_1


4.- Construir un triángulo rectángulo conocida la hipotenusa y una segunda condición
Datos (Hipotenusa a, ángulo C).
Incógnita (Construir triángulo rectángulo ABC)

construir_triangulo_2
度量几何