Uno de los primeros problemas de الهندسة متري que propongo a mis alumnos sirve para iniciar el modelo geométrico de análisis a la vez que repasamos las transformaciones básicas estudiadas en etapas anteriores.
تنشأ المشكلة باعتبارها دراسة حالة حقيقية, مزخرف مع القصة التي تختلف عن تحليل أعمق, وأدعو مازحا “جسر على نهر جواي”, o el “مشكلة الشعبين والجسر”.
La idealización del caso de estudio es sencilla y, كما ناقش, es una curiosa introducción a la teoría de resolución de problemas mediante geometría aplicada.
Dos pueblos tienen que construir un puente que cruce un río y permita a sus ciudadanos pasar de uno a otro. Como tienen que pagarlo entre ambos, quisieran que su situación “equidistara” de ambos pueblos.
Tenemos que encontrar por lo tanto una posición en el río cuya distancia “د” a los dos pueblos sea la misma.
El primer paso es buscar un modelo geométrico sencillo que idealice el problema, expresado en términos básicos de la geometría, أي, puntos y rectas. Cada objeto puede ser representado mediante la figura geométrica que más se aproxime a su forma o, en un nivel de abstracción mayor, por cualquier elemento geométrico que nos interese por una u otra propiedad.
Podemos suponer que los pueblos se idealizan como puntos (representados como círculos) y el río como una curva o línea recta.
Geométricamente la solución es sencilla. El puente, representado por el punto “P” se encuentra a igual distancia de los dos pueblos, نقاط “A” و “B“, luego debe estar en la mediatriz “م” del segmento “AB“
La solución propuesta se basa en suponer que el puente es un punto (en la idealización que hemos realizado) ya que el río lo hemos reducido a una línea sin espesor. El análisis interesante del problema empieza cuando suponemos que el río tiene un cierto espesor y, وكنتيجة لذلك, la distancia que debemos medir es desde cada punto a la posición del puente situado en la orilla más próxima a cada pueblo.
El modelo anterior ya no es válido, ni aunque consideremos la línea media del río. ¿En qué ha cambiado el problema? Interesaría describir este cambio en términos geométricos. ¿Podemos adaptar la solución anterior con alguna modificación?
En este punto del análisis suelo terminar el problema. Dejo las preguntas en el aire para que mis alumnos lo piensen y traten de encontrar la solución por ellos mismos. Os dejaré la misma incógnita en el aire … dentro de unos días publicaré la solución en este enlace:
- Solución al problema de los dos pueblos y el puente
يجب أن يكون متصل لإضافة تعليق.