La determinación de una recta en el plano exige dos restricciones geométricas; entre las condiciones más empleadas se encuentran las de paso o pertenencia a un punto y las de tipo angular (forma un determinado ángulo con otra recta o circunferencia).
Analizaremos las condiciones angulares respecto de una circunferencia dada para establecer un método de obtención de soluciones por reducción a problemas de tangencias, válido para una o dos condiciones angulares.
Supongamos el siguiente problema:
Dada una circunferencia ج مركز ال y radio dado, y un punto P exterior a la misma, determinar las rectas que pasan por dicho punto y forman un ángulo dado con la circunferencia.
En nuestro problema el ángulo es un dato del problema, por ejemplo 45º.
شهدنا, al estudiar las nociones sobre ángulos, que el ángulo que forman una recta y una circunferencia es el que forma la recta con la tangente a la circunferencia en el punto de corte entre ambas.
إذا كانت نقطة P estuviera sobre la circunferencia (T), la solución sería inmediata. Obtendríamos la tangente en T y a continuación, con el valor del ángulo, determinaríamos la dirección de la recta (R). El punto de corte de la recta con la circunferencia sería el propio punto P=T.
Si giramos la recta con centro el de la circunferencia (ال), el ángulo entre la recta girada y la circunferencia no cambia. Las infinitas posiciones de esta recta, al girar, son tangentes a una circunferencia ز concéntrica de la anterior ج. Esta circunferencia (ز) se denomina goniómetra.
Podemos cambiar la condición angular de la recta respecto de la circunferencia ج, por una condición de tangencia a la circunferencia goniómetra ز.
Para resolver por tanto el problema determinaremos primero la circunferencia goniómetra con la condición angular, y obtendremos las tangentes a la misma desde el punto P. Necesitaremos un arco capaz de 90º entre el centro ال común a las circunferencias y el punto P, para determinar los puntos de tangencia en ز.
Los puntos I1 و I2 من tangencia a la goniómetra serán los puntos de paso de las soluciones buscadas.
La circunferencia goniómetra nos permite por tanto cambiar condiciones geométricas de angularidad por otras de tangencia que podremos aplicar en la resolución de otros problemas similares.
Como ejercicio para el lector se propone determinar las rectas que forman ángulos determinados con dos circunferencias diferentes, o un ángulo con una recta y simultáneamente otro con una circunferencia.
يجب أن يكون متصل لإضافة تعليق.