Los denominados Temsil Sistemleri engloban un conjunto de técnicas y modelos de proyección que permiten visualizar elementos de un espacio tridimensional sobre un plano bidimensional.
Her sistemlerinin birçok avantajı özellikle bazı uygulamalarda kullanışlı olmasını sağlar. Bu yüzden, los sistemas que se engloban en el conjunto de perspektifler, Nesne basit bir üç boyutlu görünüm vermek özellikle yararlıdır. Ortogonal silindirik doğa sistemleri bunları Pisagor üçgen elde etmek için azaltmak için ölçü işlemlerini kolaylaştırmak (dikdörtgenler), Konik veya Merkezi modelleri yol insan vizyon çalışmaları benzer olmakla birlikte.
La geometri tanımlayıcı es un conjunto de técnicas de carácter geométrico que permite representar el espacio tridimensional sobre una superficie bidimensional y, por tanto, resolver en dos dimensiones los problemas espaciales garantizando la reversibilidad del proceso a través de la adecuada lectura.(Içinde)
Todos los sistemas se pueden estudiar desde un punto de vista proyectivo mediante las dos operaciones fundamentales: Proyección y sección. Algunos aspectos como los relativos a la incidencia o pertenencia pueden independizarse del modelo de proyección utilizado, por lo que se pueden abordar de forma generalista.
Estas últimas nociones nos llevan a relacionar los diferentes sistemas en una única figura a la hora de iniciar su estudio, facilitando una interpretación espacial de las nociones proyectivas fundamentales a la vez que establecemos puentes metodológicos entre ellos.
La Perspectiva Cónica, el Sistema Diédrico, la Perspectiva Axonométrica y la Perspectiva Caballera son Sistemas que utilizan procedimientos de proyección cónica, ortogonal y oblícua, los cuales se pueden interrelacionar en una figura que los contemple conjuntamente.
1º) Consideremos un plano de proyección, plano del dibujo, plano del papel o plano del cuadro, al que por brevedad denominamos p.
2º) Los tres vértices de proyección ortogonal, cónica y oblícua se corresponderán con los tres modelos básicos de proyección que dan lugar a las diferentes famílias de sistemas de representación.
3º) Bir nokta (A), objeto de representación. Veamos cómo se proyecta sobre el plano de proyección desde cada uno de los vértices o centros de proyección mencionados.
4º) Hacemos su primera representación en proyección ortogonal. La proyección del punto sobre el plano es la intersección de su rayo proyectante con el plano de proyección, yani, la recta que contiene al punto y al centro de proyección.
5º) También se proyecta (A) de forma cónica y oblícua a partir de los correspondientes centros de proyección.
6º) En proyección cónica dos triángulos rectángulos son semejantes y en proyección oblícua son semejantes otros dos
Los primeros triángulos comparten el ángulo g, los segundos el ángulo d y uno de los primeros con uno de los segundos el cateto ve
7º) Al considerar una recta cualquiera que pase por (A), Bir es su proyección cónica, a” ortogonal y ao oblícua.
8º) Las tres coinciden en el punto de intersección con el plano de proyección.
9º) Por tanto a-a” onun perspektifler con centro V”, a”-ao lo son con centro Içinde ve a-ao con centro Vo
10º) Un centro perspectivo impropio siempre conlleva asociado la conservación de la razón simple.
11inci) Con el centro propio no se conserva la razón simple. pero sí la razón doble.
12º) El ángulo Bir de la recta a está determinado en un triángulo rectángulo con catetos a” ve ve.
Más adelante estableceremos la condición geométrica que distingue a la proyección ortogonal ante la proyección oblícua (respecto a la proyección cónica también es reiterable), que se analizará en el denominado teorema de las tres perpendiculares.
Teşekkürler: Al profesor José Jaime Rua Armesto por su secuencia de imágenes y comentarios sobre el tema.
Olmalıdır bağlı Yorum yazmak için.