PIZiadas גרף

PIZiadas גרף

העולם שלי הוא פנימה.

Categorías Sistemas

Sistema diédrico: Fundamentos de las Proyecciones auxiliares, cambios de plano

Para representar un objeto en el sistema diédrico normalmente usaremos la proyecciones sobre los tres planos del triedro de referencia, tal y como hemos visto al estudiar los fundamentos del sistema diédrico.

En general será suficiente con utilizar únicamente dos de los tres posibles planos, quedando representada por ejemplo una recta mediante sus proyecciones sobre el plano horizontal y el vertical. En ocasiones puede ser conveniente, o incluso necesario, obtener nuevas proyecciones según diferentes direcciones de proyección, en cuyo caso las llamaramos “תחזיות עזר” .

בניצב למישור

Uno de los problemas básicos que debemos aprender al estudiar los Sistemas de Representación son aquellos en los que aparecen elementos que son perpendiculares a otros. Todos los problemas de determinación de distancias hacen uso de estos conceptos.

Veamos cómo determinar la recta perpendicular a un plano en Sistema Diédrico trabajando directamente en las proyecciones principales del sistema.

קו סתיו

Al estudiar la verdadera magnitud de una recta vimos que podíamos calcular a su vez el ángulo de esta recta respecto de un plano de proyección, כלומר, su pendiente.

En un plano podemos determinar infinitas rectas con diferente dirección contenidas en el mismo. Una de estas rectas formará la máxima condición angular respecto del plano de proyección.

מערכת dihedral: משפט של הניצב שלושה

אחד משפטי החשוב ביותר של גאומטריה תיאורית הוא כביכול “משפט של הניצב שלושה”, זה יוצר קשר בין שתי שורות בניצב כאשר אחד מהם הוא מקביל למישור ההקרנה.

מערכת dihedral: הקרנה של נקודות במישור

אתה יכול להגיע מן הקרנה השייכות נקודה שטוחה הקרנה נוספת על דו-מישור מישור במלואם? לדוגמא, אם לתת לנו את הטלה אופקי ואנכי של מטוס, ונקודת בהלה כמו determinaríamos ההקרנה במישור האופקי?

יסודות מערכת Diédrico

ראינו היכרות עם מערכות ייצוג זה גאומטריה תיאורית היא ערכה של טכניקות האופי הגיאומטריות מאפשר לייצג את מרחב תלת-ממדי על משטח דו מימדי.

בפרט נראה בפירוט מה שמכונה “Sistema diédricoque se basa en las relaciones perspectivas que aparecen en la proyección cilíndrica ortogonal sobre dos planos de proyección.

מערכות סיווג של ייצוג

La representación de los objetos técnicos se realiza mediante una o varias imágenes que se determinan proyectando los objetos sobre un plano imaginario.

El sistema de representación queda definido por tanto por la posición de dicho plano y la del centro de proyección.

La posición del objeto respecto del plano y del centro puede variar la representación del mismo, determinando la convergencia en la proyección, en mayor o menor mediada, de las líneas que son paralelas en el espacio.

מערכות ייצוג : תחולה (צמתים) [ תיאורי גיאומטריה ]

intersección recta y plano

בעיות שכיחות מנסים לקבוע את היסודות המשותפים שתי דמויות גיאומטריות; הם יכולה להיות מוגדרת כ מקרים מיוחדים של חברות.

החל מרכיבי ישרים ושטוחים, podemos aplicar los conceptos de dualidad para analizar los posibles problemas que se pueden presentar.

מערכות ייצוג : סיכויי חוץ [ תיאורי גיאומטריה ]

perspectivity

ראינו מודל כללי שתקשר סוגים שונים של תחזיות: חרוט, גלילי אלכסוני אורתוגונלית ו גלילי.

בואו ניקח דוגמא יישומית של קשרים פוטנציאליים ב ההקרנות.

מערכות ייצוג : תחזיות [ תיאורי גיאומטריה ]

תחזיות

המערכות כביכול של ייצוג מקיף את סט של טכניקות ומודלים ההקרנה אשר מאפשרים להמחיש מרחב תלת-ממדי על גבי רכיבים מטוס דו מימדי.

Cada uno de los sistemas aporta una serie de ventajas que lo hacen especialmente útil en determinadas aplicaciones. כך, los sistemas que se engloban en el conjunto de perspectivas, son especialmente útiles para dar una visión tridimensional sencilla del objeto. Los sistemas de naturaleza cilíndrica ortogonal facilitan las operaciones de medida al reducirlas a obtención de triángulos pitagóricos (rectángulos), mientras los modelos cónicos o centrales se aproximan a la forma en que trabaja la visión humana.