PIZiadas圖形

PIZiadas圖形

我的世界是英寸.

度量幾何 : 概念 “電源上的一個點一個圓”

Potencia de un punto respecto de una circunferenciaconcepto de potencia de un punto respecto de una circunferencia permite relacionar las nociones estudiadas en los teorema de 泰雷茲畢達哥拉斯 y es la puerta para el estudio de los problemas de tangencias y transformaciones como la inversión.

Usaremos los conceptos de 弧段能夠 en nuestras demostraciones, por lo que se sugiere su repaso.
Este concepto se basa en el producto de dos segmentos 和, como veremos mas adelante, permite determinar algunos lugares geométricos de gran importancia como por ejemplo el 自由基軸的兩個圓圈.

Definición de potencia

La primera definición de potencia se basa en determinar la máxima y mínima distancia a una circunferencia y obtener su producto métrico.
La potencia de un punto P respecto de una circunferencia Ç es el producto de la mayor por la menor distancia del punto P a la circunferencia Ç.
Potencia de un punto respecto de una circunferencia

電源上的一個點一個圓

En la figura vemos que la potencia del punto P respecto de la circunferencia es el producto de los segmentos” 和 “Ñ“, mínima y máxima distancia desde el punto a la circunferencia. Estos segmentos se encuentran en el diámetro de la circunferencia que contiene al punto P.

Relaciones métricas de la Potencia

Podemos relacionar métricamente el concepto básico de potencia respecto de una circunferencia, mediante el teorema de pitágoras, con el segmento de tangencia que se obtiene desde el punto a la circunferencia.

La Potencia de un punto P respecto de una circunferencia es igual a la diferencia de cuadrados entre la distancia del punto P 市中心 Ç de la circunferencia y el radio Ř 其; también al cuadrado del segmento PT de tangente si P es exterior.

potencia generalizada

Si tenemos en cuenta que el segmentoes igual a la distanciað” 點 “P” 市中心 “Çde la circunferenciaÇ“, menos el radioŘ” 其 (d-R), y que el segmentoÑes la suma deð” 和 “Ř” (d+R) tendremos que:

Expresión de potencia

Como la suma de dos variables multiplicada por la diferencia es la diferencia de sus cuadrados, vemos que la potenciaes igual a la diferencia de los cuadrados de la distanciaðy del radioŘde la circunferencia. Esta expresión nos recuerda al cateto de un triángulo rectángulo, cuyo cuadrado es igual a la diferencia de cuadrados de la hipotenusa y del otro cateto (lado ).

Si el punto P es interior a la circunferencia no existirá el segmento de tangencia, pero podemos establecer igualmente la relación con los lados de un triángulo pitagórico.

potencia de un punto interior

La Potencia de un punto P respecto de una circunferencia es igual a la diferencia de cuadrados de la distancia del punto P 市中心 Ç de la circunferencia y el radio Ř de la misma y también al cuadrado del segmento de semicuerda PT perpendicular a PC 如果 P es interior.

relaciones métricas de la potencia para puntos interiores

Potencia de un punto (維基百科)

度量幾何