PIZiadas الرسم

PIZiadas الرسم

بلدي العالم هو فيه..

مشكلة أبولونيوس : مجلس التعاون الجمركي

Cualquiera de los problemas de tangencias que se engloban bajo la denominación de “problemas de Apolonio” puede ser reducido a una de las variantes estudiadas del más básico de todos ellos: المشكلة الأساسية من الظلال (PFT).

En todos estos problemas nos plantearemos como objetivo fundamental simplificar el problema que se proponga a uno de estos casos fundamentales, mediante el cambio de las restricciones que lo definen a otras basadas en conceptos de ortogonalidad y/o diametralidad.

En este caso vamos a estudiar el que denominamos “Caso de Apolonio ccc“, أي, el caso del problema de tangencias en el que los datos vienen dados mediante condiciones de tangencias a tres circunferencias (مجلس التعاون الجمركي).

Podemos enuncia por lo tanto el problema de la siguiente manera:

Determinar las circunferencias que son tangentes a tres circunferencias.

De las 8 posibles soluciones que tiene este problema en el caso más general, analizaremos el caso más sencillo representado en la siguiente figura en la que t1 y t2 son las soluciones buscadas y c1, c2 y c3 los datos de partida.

Supongamos el caso en el que las tres circunferencias dato tienen diferente diámetro y no se cortan entre sí, siendo exteriores cada una a las otras dos.

ال centros de inversión positivos de dos circunferencias son los de homotecia que las relacionan. En la figura I12 es el centro de inversión entre las circunferencias C1 y C2, siendo e1 su circunferencia de autoinversión (radio la raíz de la potencia de inversión).

La circunferencias tangentes a C1 y C2 (isogonales), como las buscadas, serán dobles en esta inversión y por lo tanto serán ortogonales a e1, محيط قلب الذات.

Las tres circunferencias de autoinversión se encuentran en un haz elíptico de circunferencias, por lo que las circunferencias dobles en las inversiones descritas deberán ser ortogonales a estas circunferencias de autoinversión y por lo tanto pertenecer al haz conjugado, en este caso un haz hiperbólico de circunferencias.

Las circunferencias buscadas tendrán por lo tanto su centro en el eje radical del haz elíptico formado por las circunferencias de autoinversión, y tendrán por eje radical la recta base del haz anterior.

Deberemos encontrar por lo tanto una circunferencia del haz hiperbólico de puntos límites L1 y L2, puntos fundamentales del haz elíptico, que sea tangente a cualquiera de las circunferencias dato. Por ejemplo C1.

Hemos reducido el problema a la determinación de una circunferencia de un haz que sea tangente a otra circunferencia: Generalización del Problema Fundamental de Tangencias.

Para resolver el problema determinaremos el Centro Radical, CR, de las circunferencias del haz al que pertenece la solución y de la circunferencia que establece la condición de tangencia.

Los puntos de tangencia los obtendremos determinando la potencia de dicho centro respecto de la circunferencia dato o, وهو نفس, obteniendo la circunferencia de centro el centro radical que es ortogonal a la circunferencia dato . Los puntos T1 y T2 son los de corte entre estas circunferencias.

Los centros de las soluciones se encontrarán en la recta base del haz hiperbólico al que pertenecen las soluciones y alineados con los puntos de tangencia y el centro de la circunferencia dato (ya que dos circunferencias tangentes tienen alineados sus centros y el punto de tangencia).

 

La solución puede comprobarse que es tangente a las tres circunferencias dato.

 

الهندسة متري

 

 

الوظائف ذات الصلة

  • مخروطي كما الحالة رقم مراكز محيطات الظلالمخروطي كما الحالة رقم مراكز محيطات الظلال لقد رأينا أن دراسة مخروطي يمكن أن تكون مصنوعة من نهج هندسية مختلفة. بخاصة, لبدء تحليل مخروطي قمنا يعرف بأنه موضع القطع الناقص, قلنا إن: القطع الناقص هو موضع نقطة في الطائرة التي المبلغ […]
  • أبولونيوس ومشاكله عشرأبولونيوس ومشاكله عشر واحدة من المواد الأكثر شمولا كتبوه طلابي في فصول الهندسة وتصف كيفية حل ما يسمى "مشاكل أبولونيوس". La determinación de circunferencias o rectas que vengan definidas mediante restricciones geométricas basadas en […]
  • الهندسة متري : مشكلة أبولونيوس : مجلس قيادة الثورةالهندسة متري : مشكلة أبولونيوس : مجلس قيادة الثورة أي مشاكل الظلال التي تندرج تحت عنوان "مشاكل أبولونيوس" يمكن أن تخفض إلى واحد من الخيارين درس من أبسط جميع: المشكلة الأساسية من الظلال (PFT). En todos estos problemas nos plantearemos como […]
  • الهندسة متري : استثمار : التطبيق في حل المشاكل والظلال الزاويالهندسة متري : استثمار : التطبيق في حل المشاكل والظلال الزاوي الاستثمار هو التحول الذي يحل المشاكل مع الظروف الزاوي. ويمكن تطبيقه مباشرة أو استخدامها للحد من المعاهدات الأخرى طبيعة أبسط المشاكل المعروفة. وسوف يكون النهج المختلفة التي يمكن أن نتعامل مع مشكلة […]
  • الهندسة متري : تعميم المشكلة الأساسية المتمثلة في الظلال : الهندسة متري : تعميم المشكلة الأساسية المتمثلة في الظلال : لقد حل المشكلة الأساسية طالبنا الظلال عندما قدم مع الظروف تماس على دائرة أو على التوالي. المفهوم يمكننا أن نفترض أن كل المشاكل هي نفسها, si consideramos a la recta como una circunferencia de […]
  • المشكلة مع كرة القدمالمشكلة مع كرة القدم مشكلة غريبة, وعادة ما تشير إلى طلابي في الصف, نستطيع من خلالها استخدام المعرفة هندسية علمت من خلال دراسة مفهوم القوة, هو لتحديد موقع لإطلاق النار الأمثل في هدف كرة القدم من مسار معين.