PIZiadas gráficas

PIZiadas gráficas

Mi mundo es la imagen.

Categorías Geometría

Geometría proyectiva: Circunferencia como serie de segundo orden

Una circunferencia es una cónica cuyos ejes tienen igual longitud, de ahí que podamos decir que su excentricidad es nula (excentricidad=0). Podemos tratar la circunferencia como una serie de segundo orden, obtenida por la intersección de rayos homólogos de dos haces congruentes (iguales pero girados.) Este tratamiento será de gran utilidad para usarla como herramienta proyectiva y resolver la determinación de elementos dobles en series superpuestas y haces concéntricos.

Geometría proyectiva: Definición proyectiva de la cónica

Las curvas cónicas, además del tratamiento métrico basado en las nociones de tangencia, tienen un tratamiento proyectivo que se apoya en los conceptos de series y haces proyectivos.

Veremos dos definiciones de las cónicas adaptadas al “mundo de los puntos” o al “mundo de las rectas” según nos interese, en lo que se define como las definiciones “puntuales” o “tangenciales” de las curvas cónicas.

Geometría proyectiva: Centro proyectivo de dos haces proyectivos

La utilización de las leyes de la dualidad en los modelos proyectivos nos permite obtener un conjunto de propiedades y teoremas duales a partir de otros previamente deducidos. La obtención de elementos homólogos en el caso de series proyectivas se realizaba obteniendo pespectividades intermedias mediante haces perspectivos que nos permitian obtener lo que hemos denominado “eje proyectivo”. Veremos que en el caso de haces proyectivos, el razonamiento dual nos lleva a determinar centros proyectivos.

Geometría proyectiva: Eje proyectivo de dos series proyectivas

La operatividad en las relaciones perspectivas se reduce a los conceptos de pertenencia, por lo que vamos a utilizar estas técnicas para adaptarlas a los modelos proyectivos simplificando la obtención de elementos homólogos.
¿Cómo podemos definir dos series proyectivas? ¿Cúantos elementos homólogos son necesarios para determinar una proyectividad?¿Cómo podemos obtener elementos homólogos?

Geometría proyectiva: Perspectividad

Los fundamentos proyectivos se basan en las definiciones de “ternas ordenadas de elementos“ y “cuaternas que permiten definir la razón doble”, y las relaciones denominada “perspectivas” entre elementos de igual o distinta naturaleza.
Estas relaciones perspectivas, que serán usadas en la determinación de proyecciones en los sistemas de representación, se definen a partir de dos operadores proyectivos:
Proyección
Sección

Geometría métrica: Curvas : Cónicas

Entre las curvas más importantes que se estudian en geometría se encuentran las denominadas “Curvas cónicas”. Otra denominación común para estas curvas es la de “Secciones cónicas” debido a que la primera definición que se dio de ellas, por Apolonio de Perge, fue a partir de las secciones en un cono de revolución.

El problema de la mesa de billar

Uno de los juegos más geométricos que existe es el “juego del billar”, en el que mediante una percusión con un taco (un palo de billar) sobre una bola, debemos conseguir que esta impacte sobre otra u otras dispuestas en una mesa de forma rectangular. Con el “taco de billar” se pueden dar efectos a las bolas, pero si las golpeamos simplemente en el centro, su comportamiento se puede asimilar a las transformaciones clásicas que se estudian en las simetrías axiales.

Arco capaz sobre un segmento : Solución [I]

Veamos la solución al problema propuesto de aplicación del arco capaz, que planteábamos con el siguiente enunciado:

Determinar dos rectas que se apoyen en un punto P exterior a una recta r, formen entre sí un ángulo “alfa” dado y corten a la recta según un segmento de longitud “L”.

Arco capaz sobre un segmento : Ejemplo [I]

Las aplicaciones en geometría del arco capaz de un ángulo sobre un segmento dado son numerosas y variadas:

Desde la demostración de un teorema, la solución intermedia de un problema o la aplicación directa en un caso, podemos ver repetida esta construcción de forma generalizada.

Apolonio y sus diez problemas

Uno de los artículos más completos que han escrito mis alumnos en las clases de geometría es el que describe la forma de solucionar los denominados “problemas de Apolonio”.

La determinación de circunferencias o rectas que vengan definidas mediante restricciones geométricas basadas en las tangencias constituyen una familia de problemas geométricos de gran interés.