PIZiadas图形

PIZiadas图形

我的世界是英寸.

度量几何 : 概念 “电源上的一个点一个圆”

Potencia de un punto respecto de una circunferenciaconcepto de potencia de un punto respecto de una circunferencia permite relacionar las nociones estudiadas en los teorema de 泰利斯毕达哥拉斯 y es la puerta para el estudio de los problemas de tangencias y transformaciones como la 投资.

Usaremos los conceptos de 能够弧段的 en nuestras demostraciones, 所以他的审查建议.
Este concepto se basa en el producto de dos segmentos 和, como veremos mas adelante, permite determinar algunos lugares geométricos de gran importancia como por ejemplo el 激进的两个圆轴.

Definición de potencia

La primera definición de potencia se basa en determinar la máxima y mínima distancia a una circunferencia y obtener su producto métrico.
La potencia de un punto P respecto de una circunferencia Ç es el producto de la mayor por la menor distancia del punto P a la circunferencia Ç.
Potencia de un punto respecto de una circunferencia

电源上的一个点一个圆

En la figura vemos que la potencia del punto P respecto de la circunferencia es el producto de los segmentos” 和 “Ñ“, mínima y máxima distancia desde el punto a la circunferencia. Estos segmentos se encuentran en el diámetro de la circunferencia que contiene al punto P.

Relaciones métricas de la Potencia

Podemos relacionar métricamente el concepto básico de potencia respecto de una circunferencia, mediante el teorema de pitágoras, con el segmento de tangencia que se obtiene desde el punto a la circunferencia.

La Potencia de un punto P respecto de una circunferencia es igual a la diferencia de cuadrados entre la distancia del punto P 中心 Ç de la circunferencia y el radio ŗ 其; también al cuadrado del segmento PT de tangente si P es exterior.

potencia generalizada

Si tenemos en cuenta que el segmento “” es igual a la distancia “ð” 点 “P” 中心 “Ç” de la circunferencia “Ç“, menos el radio “ŗ” 其 (d-R), y que el segmento “Ñ” es la suma de “ð” 和 “ŗ” (d R) tendremos que:

Expresión de potencia

Como la suma de dos variables multiplicada por la diferencia es la diferencia de sus cuadrados, vemos que la potencia “” es igual a la diferencia de los cuadrados de la distancia “ð” y del radio “ŗ” de la circunferencia. Esta expresión nos recuerda al cateto de un triángulo rectángulo, cuyo cuadrado es igual a la diferencia de cuadrados de la hipotenusa y del otro cateto (lado ).

Si el punto P es interior a la circunferencia no existirá el segmento de tangencia, pero podemos establecer igualmente la relación con los lados de un triángulo pitagórico.

potencia de un punto interior

La Potencia de un punto P respecto de una circunferencia es igual a la diferencia de cuadrados de la distancia del punto P 中心 Ç de la circunferencia y el radio ŗ de la misma y también al cuadrado del segmento de semicuerda PT perpendicular a PC si P es interior.

relaciones métricas de la potencia para puntos interiores

Potencia de un punto (维基百科)

度量几何