PIZiadas图形

PIZiadas图形

我的世界是英寸.

Categorías Geometría proyectiva

射影几何: 获得锥形中心

Para obtener el centro de la cónica será necesario disponer de polos y polares respecto de la misma. En particular las construcciones se simplifican si conocemos tangentes y puntos de contacto. Veremos que es especialmente inmediato si se conocen tres tangentes y sus respectivos puntos de contacto, obtenidos a partir de la definición de la cónica mediante 5 datos y la aplicación de las técnicas expuestas para determinar tangentes y puntos de tangencia.

两个系列投影轴 [互动] [Geogebra]

Las construcciones de geometría proyectiva realizadas con herramientas que permitan analizar sus invariantes son de gran utilidad para el estudio de esta disciplina de la Expresión Gráfica. Veremos una de estas construcciones realizada con el software “GeoGebra”, en particular la que permite determinar el eje proyectivo de dos series proyectivas.

射影几何: 极地的共轭直径

我们已经看到极性的共轭直径的定义, 给出了共轭方向的概念,分析:

极地的共轭直径: 它们是极地两个共轭不当点.
让我们看看我们可以如何与这一概念与三角形的 autopolar 中对合以二阶系列见.

射影几何: 共轭方向

我们已经看到,极性概念来确定极地的线上某个点, 你使我们获得与四个点的圆锥形设置三种不同 involuciuones autopolar 三角, 他们使我们能够推进其显著的元素投影定义中, 直径, 中心和轴.

基本功能之一是的 “共轭方向”

射影几何 : 对合的中心

我们已经看到如何确定对合轴和, 基于极性的某点相对两条线的概念, 可能对合,可以从四个点设置, 与他们各自的轴的对合, 获得 autopolar 三角关联哪些 cuadrivertice 充分和谐关系.

在这篇文章中,我们将继续加强这些元素, 特别是在将确定什么 autopolar 三角形顶点被称为 “对合的中心”.

射影几何: 充分 Cuadrivertice

几何图形是最常用在射影几何之一的 “充分 Cuadrivertice”, 或它的对偶 “满戒指”.

在一般情况下, cuadrivertice 是由四个点形成的。, 等等这架飞机,这一数字已 8 自由度 (2 对于每个顶点的坐标) 他们将需要 8 限制,以确定一个混凝土.

虚假定位方法. 重叠的系列的第二个命令的适用范围.

射影几何的理论模型可以提出问题并不是直接应用. 我们将会有 “打扮” 因此练习来推断在学生中进一步分析和横向诊治知识: 我可以申请他们学会解决这个问题吗?.
后在详细分析具有重叠的二阶的系列行动, 让我们看看并不在于获得新切线或联络点的圆锥形的应用实例.

射影几何: 对合在重叠的二阶系列 : 轴的对合

黄宗智变换是兴趣的应用程序的极大,在几何结构中应用的双射, 因为他们大大简化他们.

我们将会看到如何定义对合二阶系列, 与圆锥状的基部, 比较重叠系列的二阶以前研究转型的新模式.