射影几何: 两对直径极性的结合获得锥形轴
锥形轴是那些缀合物极性直径是互相正交.
我们记得,两极共轭直径, 那一定会穿过中心或圆锥形, 是两个不当点的极性 (位于无穷大) 让他们被轭, 亦即, 每个点的极性都包含彼此.
这些元素的这些元素决定了直径的反应 (极性) 当我们知道两对射线及其相应的同源物时,将定义的结合将被定义.
锥形轴是那些缀合物极性直径是互相正交.
我们记得,两极共轭直径, 那一定会穿过中心或圆锥形, 是两个不当点的极性 (位于无穷大) 让他们被轭, 亦即, 每个点的极性都包含彼此.
这些元素的这些元素决定了直径的反应 (极性) 当我们知道两对射线及其相应的同源物时,将定义的结合将被定义.
我们已经看到,极性概念来确定极地的线上某个点, 你使我们获得与四个点的圆锥形设置三种不同 involuciuones autopolar 三角, 他们使我们能够推进其显著的元素投影定义中, 直径, 中心和轴.
基本功能之一是的 “共轭方向”