ריטריווינג עטלעכע זאכן פון מיין סטודענטן, que pudieran desaparecer al borrar sus blogs de la experiencia de innovación educativa, he visto este del grupo pi-tágoras que une los polígonos y lo lúdico de forma muy acertada.
די בילדונגקרייז צוגאַנג אין די פאָרעם פון פאַרמעסט איז אַ ווערטפול מיטל אַז טוט נישט האָבן צו פאַרלירן די שטרענגקייַט אין טריינינג אַפּראָוטשיז. אויף די פאַרקערט, לעץ ויספאָרשן וויסן קריטיקאַלי און פֿאַרוויילערישע פּאָר. דעם גרופּע פון סטודענטן האט שוין מצליח אין זייַן צוגאַנג, שוין ציטירטן אין דער צייַט.
Empezamos un nuevo curso y qué mejor manera de hacerlo que aprender de nuestros alumnos
געוועט דזשיאַמעטריק
El otro día, estando en el lugar más propicio para el intercambio libre de ideas, vamos, en lo que viene siendo el bar, se propuso el siguiente juego, que proponemos a todos los lectores.
- Un señor, bastante mayor, por cierto, nos dió, diez monedas de un euro, y nos dijo: -Si sois capaces de hacer con esas diez monedas, cinco filas de cuatro monedas cada fila, no solo os dare los 10 euros, si no que además os invito a lo que queráis ahora mismo-.
Pobres de nosotros, felices pensando: “bah, estudiantes como nosotros, lo sacamos fijo”.El caso, pasó una hora y no sacamos nada en claro.
- Seguros de nuestras capacidades y con cara de indignación, miramos a aquel señor y le dijimos: -Esto es imposible- a lo que el contestó: -Cierto se me olvidaba deciros que una moneda puede pertenecer a varias filas, eso si, no me hagaís una fila de diez monedas y me la subdividais-.
Ahora si es nuestro pensamos. Pobres de nosotros, otra vez. El partido concluyó (que si, que fuimos a ver el partido) y el señor anunció que se marchaba, llevandose las monedas y la solución. Horas más tarde, y ya en casa, se paseó, por la mente de algunos la solución. Una solución geométrica (¡que casualidad!).
Querido lector, si quiere pensar la solución, le recomendamos que no pase de estas líneas por que sera aquí donde se exponga (y donde por fin empecemos a hablar de dibujo, que ya esta bueno…).
—————————————————————————————–
Como tantas veces hemos hecho en la clase de dibujo, debemos simplificar el problema que se nos pide resolver, en uno mucho más sencillo.
En este caso ocurre lo mismo, y para el análisis y resolución de este problema seguiremos un procedimiento análogo.
Trataremos las monedas como puntos, און ראָוז וועט נישט זייַן עפּעס אָבער סעגמאַנץ באשלאסן דורך די פונקטן. אזוי מיר זענען געבעטן צו ידענטיפיצירן פינף סעגמאַנץ באקאנט צען פונקטן, און אַז יעדער אָפּשניט איז געשאפן פון פיר פונקטן, ניימלי, יעדער פונט איז פּראָסט צו די סעגמאַנץ.
דאָך, און ווי דערמאנט אויבן, אַלגעמיין דעם איז נישט קיין צען פונקטן, אויב די פּראָבלעם איז צו געפינען דעם ספּעציפיש שטעלע אין וואָס דאָס איז אמת. זאל אונדז איצט אָנהייבן די אַנאַליסיס פון דעם טשיקאַווע פּראָבלעם.
אויב מיר אויסקלייַבן 10 ווייזט אין די פלאַך, ונאַליגנעד'ם זיכער אַז רובֿ מענטשן קומט צו גייַסט דעם געדאַנק פון אַ פילעק, צען-סיידאַד פילעק.
ווען מיר זענען געבעטן צו טאָן פינף שורות, con puntos pertenecientes a varias lineas a muchos se nos ocurre la idea de varios trazados con un punto común como dos rectas que se cortan en un punto.
Y a partir de estas ideas comenzamos a pelearnos con este pequeño juego geométrico.
Llevando a la situación límite esta idea de las rectas,llega un momento en el cual, como tenemos que situar cinco segmentos se nos ocurre situar cinco puntos, sabiendo que con esos cinco puntos, comunes todos a dos segmentos quedan totalmente determinados los cinco segmentos, observamos que cinco puntos definen un polígono de cinco lados:
un pentágono.
Pero aún nos quedan otros cinco puntos que determinar, y todos ellos comunes a dos segmentos, es ahora cuando entra en juego la idea de el polígono estrellado inscrito al pentágono.
Nos centramos ahora en nuestro polígono estrellado inscrito al pentágono.
Ya tenemos colocadas nuestras rectas en cuyas intersecciones estarán los puntos, y con ellos determinados los segmentos.
Volviendo al problema inicial habremos determinado, cinco filas de cuatro monedas cada fila.
Sinceramente, nosotros nos quedamos sin dinero y sin consumición, asi que, por lo menos esperamos que os haya gustado.
Debe estar conectado para enviar un comentario.