PIZiadas GRÁFICAS

PIZiadas GRÁFICAS

Мой мир дюйма.

Categorías Métrica

Инвестиции: Таблица умственная гимнастика для определения элементов с угловыми условиями

Ya hemos usado unaTabla de Gimnasia Mentalal estudiar la inversión: un conjunto de ejercicios que sirven para estimular el razonamiento, развивать и поддерживать живой ум, автоматизировать расчет процессов и анализ и т.д..

Nos proponemos ahora plantear una serie similar de problemas pero encaminados a obtener soluciones a problemas básicos de geometría. En este caso plantearemos la búsqueda de circunferencias que pasen por un punto dado y cumplan condiciones angulares respecto de otras dos circunferencias.

Изучение Путь метрической геометрии

Al abordar el estudio de una ciencia podemos seguir diferentes trayectorias que conducen al aprendizaje. El encadenamiento de conceptos ligados unos a otros nos permitirá generar una representación mental de los modelos abstractos, facilitando su asimilación y posterior aplicación en la resolución de problemas.
En estas páginas se proponen dos imágenes que resumen una posible estrategia o secuencia de incorporación progresiva de los conceptos básicos de esta rama de la ciencia en la formación de nuestros alumnos.

Проблема Аполлония : ссс

Любые проблемы касательных, которые включены под названием «проблемы Apolonio» может быть сведена к одному из вариантов изучили самые основные из них всех: Фундаментальная проблема касательные (PFT).

En este caso vamos a estudiar el que denominamos “Caso de Apolonio ccc“, а именно, el caso del problema de tangencias en el que los datos vienen dados mediante condiciones de tangencias a tres circunferencias (ссс).

Инвестиции: Таблица процессорные элементы умственной гимнастики

Что такое таблица умственной гимнастики? Можно сказать, что это набор упражнений, которые служат, чтобы стимулировать мышление, развивать и поддерживать живой ум, автоматизировать расчет процессов и анализ и т.д..
En las asignaturas de geometría podemos proponer un problema y hacer ligeras variaciones sobre alguno de los datos. La variabilidad de un problema permitirá crear famílias de ejercicios en los que destacaremos uno o varios conceptos de interés.

Реверсивная точка. 10 конструкции для получения [Я- Метрика]

Одна из рекомендаций, я всегда делаю мои студенты, чтобы попытаться решить ту же проблему по-разному, а много раз одни и те же проблемы, с почти аналогичными заявлениями.

Мы видим проблемы с метрическими или проективными подходами в каждом конкретном случае.

En una de mis últimas clases planteamos la obtención del inverso de un punto, en una inversión en la que se conoce el centro y la potencia. El enunciado propuesto era el siguiente:

Dado el cuadrado de la figura, en el que uno de los vértices es el centro de inversión y el vértice opuesto es un punto doble, determinar el inverso del punto A (vértice contiguo).

коническая метрика: окружность головы

окружность головы

Мы определили эллипс в качестве “геометрическое место центров окружностей, через фокус, Они касаются фокальной окружности другого фокуса центра”.

Esta definición nos permite abordar el estudio de la cónica mediante la aplicación de los conceptos vistos al resolver los problemas de tangencias y, en particular, reduciéndolos al problema fundamental de tangencias.

Relacionaremos esta circunferencia con otra cuyo radio es la mitad del radio de la focal, y su centro es el de la cónica. Llamaremos a esta circunferencia “окружность головы”.

Конусный как локус центры окружностей касательные

Мы видели, что изучение коники могут быть сделаны из различных геометрических подходов. Особенно, начать анализировать конические мы определили как эллипс локус, мы сказали, что:

La Elipse es el lugar geométrico de los puntos de un plano cuya suma de distancias a dos puntos fijos, denominados Focos, tiene un valor constante.

Esta definición métrica de esta importante curva nos permite abordar su estudio relacionándolo con el de las circunferencias tangentes, conocido como el “Проблема Аполлония” en alguna de sus versiones. Cuando abordemos el estudio de las parábola o de la hipérbola volveremos a replantear el problema para generalizar estos conceptos y reducir los problemas alProblema fundamental de tangencias en el caso recta”, o el “Problema fundamental de tangencias en el caso circunferencia”, а именно, la determinación de una circunferencia de unHaz corradicalcon una condición de tangencia.

Метрическая геометрия : периметры инвестиционный луч

La transformación mediante inversión de elementos agrupados en formas geométricas puede tener interés para usar la inversión como herramienta de análisis en problemas complejos. En este caso estudiaremos la transformación de loshaces de circunferencias corradicalesmediante diferentes inversiones que los transformen. Más adelante necesitaremos estas transformaciones para resolver el problema de “Apolonio” (circunferencia con tres restricciones de tangencia) o laGeneralización del problema de Apolonio” (circunferencias con tres restricciones angulares).

Устойчивость динамических геометрических построений с GeoGebra: Полярные точки окружности

Изучение дисциплин классической геометрии может быть усилено с помощью инструментов, которые позволяют конструкции, которые могут быть изменены динамически: вариационные конструкции.
инструмент “GeoGebra” nos servirá para ilustrar estos conceptos y demostrar la importancia del conocimiento detallado de las relaciones geométricas para asegurar la robustez de las construcciones que usamos en los razonamientos geométricos, как, иногда, algunas construcciones pueden perder su validez.

Треугольник геометрия [Проблема]

Hemos visto al estudiar el concepto de potencia o los teoremas del cateto y de la altura relaciones métricas entre segmentos.

En estas relaciones, junto con las del Teorema de Pitágoras se relacionan segmentos mediante formas cuadráticas que también podemos interpretar como áreas (producto de dos longitudes)