PIZiadas GRÁFICAS

PIZiadas GRÁFICAS

Мой мир дюйма.

Categorías Geometría proyectiva

Проективная геометрия: Получение конического центра

Para obtener el centro de la cónica será necesario disponer de polos y polares respecto de la misma. En particular las construcciones se simplifican si conocemos tangentes y puntos de contacto. Veremos que es especialmente inmediato si se conocen tres tangentes y sus respectivos puntos de contacto, obtenidos a partir de la definición de la cónica mediante 5 datos y la aplicación de las técnicas expuestas para determinar tangentes y puntos de tangencia.

проективное центр два луча [интерактивный] [GeoGebra]

Una cónica (puntual) es el lugar geométrico de los puntos de intersección de dos haces proyectivos.
Este modelo se ha podido comprobar con un modelo variacional del eje proyectivo realizado con Geogebra.

Проективная ось двух серий [интерактивный] [GeoGebra]

Las construcciones de geometría proyectiva realizadas con herramientas que permitan analizar sus invariantes son de gran utilidad para el estudio de esta disciplina de la Expresión Gráfica. Veremos una de estas construcciones realizada con el software “GeoGebra”, en particular la que permite determinar el eje proyectivo de dos series proyectivas.

Проективная геометрия: Конъюгата Полярный диаметры

Мы видели определение полярных сопряженных диаметров, для анализа концепции сопряженных направлений:

Конъюгата Полярный диаметры: Они являются Полярный два конъюгированных неправильная точка.
Давайте посмотрим, как мы можем отнести это понятие с autopolar треугольника, видел в инволюций в серии второго порядка.

Проективная геометрия: Сопряженные направления

Концепции полярности мы видели чтобы определить полярные точки на линии, Вы позволили нам получить треугольник autopolar конические параметр три разных involuciuones с четырьмя точками, Они позволяют нам двигаться вперед в определении проективных его заметных элементов, диаметры, Центр и оси.

Это одна из основ из “Сопряженные направления”

Проективная геометрия: Касательную из точки к конической

Мы видели как определить точки пересечения прямой линии с коническими, определяется пять очков. Затем мы увидим двойная проблема.

Эта проблема состоит из определения возможных два прямой касательной от точки к конический определяется пять касательной.

Проективная геометрия : Центр инволюции

Мы видели как определить оси инволюцией и, на основе концепции полярные точки по две линии, возможные инволюций, которые могут быть установлены из четырех точек, с их соответствующих валы инволюции, получение autopolar треугольник связанные, которые являются гармоничные отношения полный cuadrivertice.

В этой статье мы продолжим активизировать эти элементы, в частности в вершины треугольника autopolar, которые будут определять то, что известно как “Центр инволюции”.

GEOMETRIA Proyectiva: Autopolares треугольники в инволюций в серии второго порядка

Подключение четыре точки конические proyectivamente, инволюций мы определить оси инволюции этих proyectividades.

Учитывая четыре точки, необходимые для определения инволюции, Мы можем спросить, что много различных инволюций можно установить между ними.

GEOMETRIA Proyectiva: Полная Cuadrivertice

Один из наиболее часто используемых в проективной геометрии, геометрических фигур является о “Полная Cuadrivertice”, или его двойной “Полное кольцо”.

В целом, cuadrivertice формируется четырьмя точками, так на плоскости, эта цифра имеет 8 степень свободы (2 координаты каждой вершины) и они будут нужны 8 ограничения для определения один бетон.

Метод ложные позиции. Применение перекрытия серии второго порядка.

Теоретические модели Проективная геометрия может предложить проблемы, которые не имеют прямого применения. Мы будем иметь “одеваются” Поэтому упражнения для выведения в студенческой дальнейшего анализа и поперечной обработки знаний: Можно ли применять то, что они учатся решить эту проблему?.
После анализа в деталях операции с перекрывающимися серии второго порядка, Давайте посмотрим пример приложения, которое состоит не в получении новых касательных или точки соприкосновения конические.

Проективная геометрия: Инволюция в перекрытия серии второго порядка : Ось инволюции

Инволюционный преобразования являются приложениями биективное большой интерес для применения в геометрические конструкции, так как они значительно упростить их.

Мы увидим, как определено инволюции в серии второго порядка, с коническим основанием, Сравнение новой модели трансформации с перекрывающимися серии второго порядка ранее учился.