PIZiadas gráficas

PIZiadas gráficas

Mi mundo es la imagen.

Categorías Métrica

Inversión: Tabla de gimnasia mental para determinación de elementos con condiciones angulares

Ya hemos usado una “Tabla de Gimnasia Mental” al estudiar la inversión: un conjunto de ejercicios que sirven para estimular el razonamiento, desarrollar y mantener la mente ágil, automatizar procesos de cálculo y análisis etc.

Nos proponemos ahora plantear una serie similar de problemas pero encaminados a obtener soluciones a problemas básicos de geometría. En este caso plantearemos la búsqueda de circunferencias que pasen por un punto dado y cumplan condiciones angulares respecto de otras dos circunferencias.

Secuencia de aprendizaje de la Geometría Métrica

Al abordar el estudio de una ciencia podemos seguir diferentes trayectorias que conducen al aprendizaje. El encadenamiento de conceptos ligados unos a otros nos permitirá generar una representación mental de los modelos abstractos, facilitando su asimilación y posterior aplicación en la resolución de problemas.
En estas páginas se proponen dos imágenes que resumen una posible estrategia o secuencia de incorporación progresiva de los conceptos básicos de esta rama de la ciencia en la formación de nuestros alumnos.

Problema de apolonio : ccc

Cualquiera de los problemas de tangencias que se engloban bajo la denominación de “problemas de Apolonio” puede ser reducido a una de las variantes estudiadas del más básico de todos ellos: el problema fundamental de tangencias (PFT).

En este caso vamos a estudiar el que denominamos “Caso de Apolonio ccc“, es decir, el caso del problema de tangencias en el que los datos vienen dados mediante condiciones de tangencias a tres circunferencias (ccc).

Inversión: Tabla de gimnasia mental para transformación de elementos

¿Qué es una tabla de gimnasia mental? Podemos decir que es un conjunto de ejercicios que sirven para estimular el razonamiento, desarrollar y mantener la mente ágil, automatizar procesos de cálculo y análisis etc.
En las asignaturas de geometría podemos proponer un problema y hacer ligeras variaciones sobre alguno de los datos. La variabilidad de un problema permitirá crear famílias de ejercicios en los que destacaremos uno o varios conceptos de interés.

Inversión de un punto. 10 construcciones para su obtención [I- Métrica]

Una recomendación que hago siempre a mis alumnos es que traten de resolver un mismo problema de formas diferentes, en lugar de hacer muchas veces los mismos problemas con enunciados casi similares.

Veremos un problema con enfoques métricos o proyectivos en cada caso.

En una de mis últimas clases planteamos la obtención del inverso de un punto, en una inversión en la que se conoce el centro y la potencia. El enunciado propuesto era el siguiente:

Dado el cuadrado de la figura, en el que uno de los vértices es el centro de inversión y el vértice opuesto es un punto doble, determinar el inverso del punto A (vértice contiguo).

Cónicas métricas: Circunferencia principal

Circunferencia principal

Hemos definido la elipse como el “lugar geométrico de centros de circunferencias que, pasando por un foco, son tangentes a la circunferencia focal de centro el otro foco”.

Esta definición nos permite abordar el estudio de la cónica mediante la aplicación de los conceptos vistos al resolver los problemas de tangencias y, en particular, reduciéndolos al problema fundamental de tangencias.

Relacionaremos esta circunferencia con otra cuyo radio es la mitad del radio de la focal, y su centro es el de la cónica. Llamaremos a esta circunferencia “Circunferencia principal”.

Las Cónicas como Lugar Geométrico de Centros de Circunferencias Tangentes

Hemos visto que el estudio de las cónicas se puede realizar desde diferentes enfoques geométricos. En particular, al iniciar el análisis de las cónicas hemos definido la elipse como lugar geométrico, decíamos que:

La Elipse es el lugar geométrico de los puntos de un plano cuya suma de distancias a dos puntos fijos, denominados Focos, tiene un valor constante.

Esta definición métrica de esta importante curva nos permite abordar su estudio relacionándolo con el de las circunferencias tangentes, conocido como el “Problema de Apolonio” en alguna de sus versiones. Cuando abordemos el estudio de las parábola o de la hipérbola volveremos a replantear el problema para generalizar estos conceptos y reducir los problemas al “Problema fundamental de tangencias en el caso recta”, o el “Problema fundamental de tangencias en el caso circunferencia”, es decir, la determinación de una circunferencia de un “Haz corradical” con una condición de tangencia.

Geometría métrica : Inversión de haces de circunferencias

La transformación mediante inversión de elementos agrupados en formas geométricas puede tener interés para usar la inversión como herramienta de análisis en problemas complejos. En este caso estudiaremos la transformación de los “haces de circunferencias corradicales” mediante diferentes inversiones que los transformen. Más adelante necesitaremos estas transformaciones para resolver el problema de “Apolonio” (circunferencia con tres restricciones de tangencia) o la “Generalización del problema de Apolonio” (circunferencias con tres restricciones angulares).

Sobre la robustez de las construcciones geométricas dinámicas con Geogebra: Polar de un punto respecto de una circunferencia

El estudio de las disciplinas de la geometría clásica puede verse reforzado mediante la utilización de herramientas que permiten realizar construcciones susceptibles de ser cambiadas de forma dinámica: Construcciones variacionales.
La herramienta “Geogebra” nos servirá para ilustrar estos conceptos y demostrar la importancia del conocimiento detallado de las relaciones geométricas para asegurar la robustez de las construcciones que usamos en los razonamientos geométricos, ya que, en ocasiones, algunas construcciones pueden perder su validez.

Geometría del triángulo rectángulo [Problema]

Hemos visto al estudiar el concepto de potencia o los teoremas del cateto y de la altura relaciones métricas entre segmentos.

En estas relaciones, junto con las del Teorema de Pitágoras se relacionan segmentos mediante formas cuadráticas que también podemos interpretar como áreas (producto de dos longitudes)