PIZiadas gráficas

PIZiadas gráficas

Mi mundo es la imagen.

Geometría proyectiva: Obtención de los ejes de una cónica a partir de dos parejas de Diámetros Polares Conjugados

Los ejes de una cónica son aquellos diámetros polares conjugados que son ortogonales entre si.

Recordaremos que dos diámetros polares conjugados, que pasarán necesariamente por el centro O de la cónica, son las polares de dos puntos impropios (situados en el infinito) que sean conjugados, es decir, que la polar de cada uno de esos puntos contiene al otro.

Estas parejas de elementos determinan una involución de diámetros (polares) conjugados que quedará definida cuando conozcamos dos parejas de rayos y sus correspondientes homólogos.

Supongamos que de una cónica se conocen, entre otros posibles elementos, dos parejas de diámetros y sus conjugados, por ejemplo a-a’ y b-b’.

El objetivo es encontrar la pareja de rectas homólogas que sean ortogonales entre sí. Para ello seccionaremos por una circunferencia que contenga al vértice del haz de rectas obteniendo una serie de segundo orden en involución que es proyectiva del haz de rectas. En esta serie de segundo orden podemos determinar el centro de involución I, ya que cada par de puntos homólogos en la involución estarán alineados con este punto.

Si quisiéramos obtener el elemento homólogo de cualquier punto de esta serie, su homólogo se encontrará sobre la circunferencia alineado con I. En particular si queremos encontrar dos rayos homólogos que sean ortogonales deberán cortar a la circunferencia en puntos de un diámetro (para la ortogonalidad) que contenga al centro de involución (para asegurar que son homólogos en la involución)

Esto nos permite obtener los ejes de la cónica en dirección, aunque faltará aún determinar la magnitud de los mismos.

Geometría Proyectiva

Related Posts

  • Centro proyectivo de dos Haces  [Interactivo] [Geogebra]Centro proyectivo de dos Haces [Interactivo] [Geogebra] Una cónica (puntual) es el lugar geométrico de los puntos de intersección de dos haces proyectivos. Este modelo se ha podido comprobar con un modelo variacional del eje proyectivo realizado con Geogebra.
  • Geometría proyectiva: Obtención del centro de la cónicaGeometría proyectiva: Obtención del centro de la cónica Para obtener el centro de la cónica será necesario disponer de polos y polares respecto de la misma. En particular las construcciones se simplifican si conocemos tangentes y puntos de contacto. Veremos que es especialmente inmediato si se conocen tres tangentes y sus respectivos puntos […]
  • Método de la falsa posición. Aplicación de series superpuestas de segundo orden.Método de la falsa posición. Aplicación de series superpuestas de segundo orden. Los modelos teóricos de la geometría proyectiva se pueden utilizar proponiendo problemas que no sean de aplicación directa. Tendremos que "vestir" por lo tanto los ejercicios para inferir en el alumno un mayor análisis y un tratamiento transversal del conocimiento: ¿Puedo aplicar lo […]
  • Cónica definida por sus dos focos y un puntoCónica definida por sus dos focos y un punto Uno de los primeros problemas que podemos resolver basándonos en la definición de cónica como "lugar geométrico de los centros de circunferencias que pasando por un punto fijo (foco) son tangentes a una circunferencia (circunferencia focal de centro el otro foco)" es el de determinación […]
  • Geometría proyectiva: Direcciones conjugadasGeometría proyectiva: Direcciones conjugadas Los conceptos de polaridad que hemos visto al determinar la polar de un punto respecto de una recta, que nos han permitido obtener el triángulo autopolar de una cónica al establecer tres involuciuones diferentes con cuatro puntos, nos permiten avanzar en la definición proyectiva de sus […]
  • Geometría proyectiva: Centro proyectivo de dos haces proyectivosGeometría proyectiva: Centro proyectivo de dos haces proyectivos La utilización de las leyes de la dualidad en los modelos proyectivos nos permite obtener un conjunto de propiedades y teoremas duales a partir de otros previamente deducidos. La obtención de elementos homólogos en el caso de series proyectivas se realizaba obteniendo pespectividades […]