PIZiadas gráficas

PIZiadas gráficas

Mi mundo es la imagen.

Categorías Geometría

Tetraedros en Blender

Los programas de modelado de sólidos disponen de objetos básicos denominados “primitivas” a partir de los cuales se pueden generar objetos más complejos mediante transformaciones geométricas, operaciones booleanas y edición de vértices.
El conocimiento de las propiedades de las figuras geométricas nos permitirá generar otros cuerpos básicos que no tenga la aplicación, a partir de los elementos antes descritos.

Cónica definida por sus dos focos y un punto

Uno de los primeros problemas que podemos resolver basándonos en la definición de cónica como “lugar geométrico de los centros de circunferencias que pasando por un punto fijo (foco) son tangentes a una circunferencia (circunferencia focal de centro el otro foco)” es el de determinación de la cónica a partir de sus dos focos y un punto.

La definición clásica quedará determinada en cuanto se obtengan los vértices A1 y A2 de la cónica.

Cónicas métricas: Circunferencia principal

Circunferencia principal

Hemos definido la elipse como el “lugar geométrico de centros de circunferencias que, pasando por un foco, son tangentes a la circunferencia focal de centro el otro foco”.

Esta definición nos permite abordar el estudio de la cónica mediante la aplicación de los conceptos vistos al resolver los problemas de tangencias y, en particular, reduciéndolos al problema fundamental de tangencias.

Relacionaremos esta circunferencia con otra cuyo radio es la mitad del radio de la focal, y su centro es el de la cónica. Llamaremos a esta circunferencia “Circunferencia principal”.

Las Cónicas como Lugar Geométrico de Centros de Circunferencias Tangentes

Hemos visto que el estudio de las cónicas se puede realizar desde diferentes enfoques geométricos. En particular, al iniciar el análisis de las cónicas hemos definido la elipse como lugar geométrico, decíamos que:

La Elipse es el lugar geométrico de los puntos de un plano cuya suma de distancias a dos puntos fijos, denominados Focos, tiene un valor constante.

Esta definición métrica de esta importante curva nos permite abordar su estudio relacionándolo con el de las circunferencias tangentes, conocido como el “Problema de Apolonio” en alguna de sus versiones. Cuando abordemos el estudio de las parábola o de la hipérbola volveremos a replantear el problema para generalizar estos conceptos y reducir los problemas al “Problema fundamental de tangencias en el caso recta”, o el “Problema fundamental de tangencias en el caso circunferencia”, es decir, la determinación de una circunferencia de un “Haz corradical” con una condición de tangencia.

Geometría métrica : Inversión de haces de circunferencias

La transformación mediante inversión de elementos agrupados en formas geométricas puede tener interés para usar la inversión como herramienta de análisis en problemas complejos. En este caso estudiaremos la transformación de los “haces de circunferencias corradicales” mediante diferentes inversiones que los transformen. Más adelante necesitaremos estas transformaciones para resolver el problema de “Apolonio” (circunferencia con tres restricciones de tangencia) o la “Generalización del problema de Apolonio” (circunferencias con tres restricciones angulares).

Sobre la robustez de las construcciones geométricas dinámicas con Geogebra: Polar de un punto respecto de una circunferencia

El estudio de las disciplinas de la geometría clásica puede verse reforzado mediante la utilización de herramientas que permiten realizar construcciones susceptibles de ser cambiadas de forma dinámica: Construcciones variacionales.
La herramienta “Geogebra” nos servirá para ilustrar estos conceptos y demostrar la importancia del conocimiento detallado de las relaciones geométricas para asegurar la robustez de las construcciones que usamos en los razonamientos geométricos, ya que, en ocasiones, algunas construcciones pueden perder su validez.

Eje proyectivo de dos series [Interactivo] [Geogebra]

Las construcciones de geometría proyectiva realizadas con herramientas que permitan analizar sus invariantes son de gran utilidad para el estudio de esta disciplina de la Expresión Gráfica. Veremos una de estas construcciones realizada con el software “GeoGebra”, en particular la que permite determinar el eje proyectivo de dos series proyectivas.

Geometría del triángulo rectángulo [Problema]

Hemos visto al estudiar el concepto de potencia o los teoremas del cateto y de la altura relaciones métricas entre segmentos.

En estas relaciones, junto con las del Teorema de Pitágoras se relacionan segmentos mediante formas cuadráticas que también podemos interpretar como áreas (producto de dos longitudes)

Cónicas : Elipse como lugar geométrico

El estudio de las cónicas se puede realizar desde diferentes enfoques geométricos. Uno de las análisis más usado es el que las determina a partir de secciones planas en un cono de revolución.

A partir de esta definición es posible inferir propiedades métricas de estas curvas, además de nuevas definiciones de las mismas.

El problema del centro de giro

Un giro en el plano está determinado por su centro (de giro) y el ángulo girado. Esto es equivalente a definir tres datos simples, dos para el centro (coordenadas “x” e “y”) y uno para el valor del ángulo expresado en grados en cualquiera de los tres sistemas de unidades que usamos, grados centesimales, sexagesimales y radianes.

Normalmente solemos resolver en geometría muchos problemas directos en los que se realizan giros. Nos dan una figura y nos solicitan que, con un cierto centro, la giremos un ángulo determinado. Menos común es plantear el problema inverso.