PIZiadas gráficas

PIZiadas gráficas

Mi mundo es la imagen.

Cónica definida por sus dos focos y un punto

Uno de los primeros problemas que podemos resolver basándonos en la definición de cónica como “lugar geométrico de los centros de circunferencias que pasando por un punto fijo (foco) son tangentes a una circunferencia (circunferencia focal de centro el otro foco)” es el de determinación de la cónica a partir de sus dos focos y un punto.

La definición clásica quedará determinada en cuanto se obtengan los vértices A1 y A2 de la cónica.

La cónica se encuentra definida mediante 5 parámetros ya que cada uno de los focos aporta dos datos al ser elementos fundamentales de la cónica y el punto de paso sólo uno al haber infinitos puntos en la cónica.

Si suponemos que la cónica es una elipse, la suma de los radios focales será constante e igual al valor del eje mayor:

ρ1+ρ2 = 2a

En el caso de tratarse de una hipérbola en lugar de la suma de radios focales deberíamos usar su diferencia.

El punto medio entre F1 y F2 será el centro O de la cónica y los vértices se encontrarán a una distancia “a” de este punto.

El eje menor de la cónica será perpendicular al eje mayor (A1-A2) y pasará por el centro O de la cónica. Los límites de este eje quedarán definidos ya que la distancia de sus extremos a los focos tiene que ser igual al valor “a” para que su suma (distancia a los dos focos) sea “2a”. Denominaremos B1 y B2 a los extremos del eje menor. Se determinarán con dos circunferencias auxiliares de centro los focos y de radio “a”, como puede deducirse fácilmente.

GEOMETRÍA MÉTRICA

Related Posts

  • Cónicas : Elipse como lugar geométricoCónicas : Elipse como lugar geométrico El estudio de las cónicas se puede realizar desde diferentes enfoques geométricos. Uno de las análisis más usado es el que las determina a partir de secciones planas en un cono de revolución. A partir de esta definición es posible inferir propiedades métricas de estas curvas, además […]
  • Las Cónicas como Lugar Geométrico de Centros de Circunferencias TangentesLas Cónicas como Lugar Geométrico de Centros de Circunferencias Tangentes Hemos visto que el estudio de las cónicas se puede realizar desde diferentes enfoques geométricos. En particular, al iniciar el análisis de las cónicas hemos definido la elipse como lugar geométrico, decíamos que: La Elipse es el lugar geométrico de los puntos de un plano cuya suma […]
  • Centro proyectivo de dos Haces  [Interactivo] [Geogebra]Centro proyectivo de dos Haces [Interactivo] [Geogebra] Una cónica (puntual) es el lugar geométrico de los puntos de intersección de dos haces proyectivos. Este modelo se ha podido comprobar con un modelo variacional del eje proyectivo realizado con Geogebra.
  • piLugar Geométrico de la Suma/Diferencia de cuadrados de distancias a dos puntos fijos Los lugares geométricos permiten determinar puntos que satisfacen una determinada condición geométrica. Son de interés en la resolución de problemas en los que se imponen restricciones métricas o geométricas. Algunos lugares geométricos son elementales y sirven para definir figuras
  • Geometría métrica : Obtención del Eje radical de dos circunferenciasGeometría métrica : Obtención del Eje radical de dos circunferencias El eje radical de dos circunferencias es ellugar geométrico de los puntos de un plano que tienen igual potencia respecto de dos circunferencias. Es una recta que tiene dirección perpendicular a la línea de centros de las circunferencias. Para determinar dicho eje será necesario por lo […]
  • Geometría métrica : Eje radical de dos circunferenciasGeometría métrica : Eje radical de dos circunferencias Los lugares geométricos sirven para determinar la solución de problemas con restricciones geométricos. Entre las condiciones más utilizadas se encuentran las de naturaleza angular y dentro de éstas las de ortogonalidad. Dadas dos circunferencias, el conjunto simplemente infinito de […]