PIZiadas gráficas

PIZiadas gráficas

Mi mundo es la imagen.

Las Cónicas como Lugar Geométrico de Centros de Circunferencias Tangentes

Hemos visto que el estudio de las cónicas se puede realizar desde diferentes enfoques geométricos.

En particular, al iniciar el análisis de las cónicas hemos definido la elipse como lugar geométrico, decíamos que:

La Elipse es el lugar geométrico de los puntos de un plano cuya suma de distancias a dos puntos fijos, denominados Focos, tiene un valor constante.

Esta definición métrica de esta importante curva nos permite abordar su estudio relacionándolo con el de las circunferencias tangentes, conocido como el “Problema de Apolonio” en alguna de sus versiones. Cuando abordemos el estudio de las parábola o de la hipérbola volveremos a replantear el problema para generalizar estos conceptos y reducir los problemas al “Problema fundamental de tangencias en el caso recta“, o el “Problema fundamental de tangencias en el caso circunferencia“, es decir, la determinación de una circunferencia de un “Haz corradical” con una condición de tangencia.

Supongamos, aplicando la definición anterior de la elipse, que los puntos fijos son F1 y F2. Estos puntos son los focos de la elipse. Supongamos además que la cónica se termina de definir por la condición de paso por un punto dado P.

Según la definición anterior la suma de distancias desde P a los dos focos debe ser constante. Llamaremos a esa suma “2a”.

ρ1 + ρ2 = 2a = constante

Si llevamos el segmento ρ2 a continuación del punto P según la dirección del segmento ρ1, obtendremos un punto “SF2” que dista del foco F1 el valor “2a“.

Al obtener todos los puntos de la cónica, como la suma de distancias a los focos es “2a“, los puntos similares al “SF2” se encontrarán a esa distancia (2a) del foco F1, por lo que se encontrarán en una circunferencia denominada “Circunferencia focal de la elipse“.

 

La circunferencia focal de una cónica es aquella circunferencia que tiene su centro en uno de sus focos y su radio es igual a la distancia entre los vértices de la cónica (2a)

Como la distancia del punto P al foco F2 que no es centro de la focal, es la misma que al punto “SF2”, la circunferencia que tiene su centro en el punto P y radio el valor “ρ2” pasará por “SF2” punto de la circunferencia focal, pero como además los centros “F1” de la focal y “P” de esta nueva circunferencia se encuentran alineados con el punto común de ambas “SF2”, este punto es de tangencia entre las dos circunferencias, lo que nos permite concluir que:

Los puntos de una elipse son los centros de las circunferencias que siendo tangentes a la circunferencia focal, pasan por el otro foco.

Esta definición de la cónica nos permite abordar los problemas de determinación de tangentes y puntos de paso o tangencia a la cónica mediante la solución de problemas de tangencias.

Por ejemplo, determinar los puntos de intersección de una recta con una cónica es determinar las circunferencias que tienen su centro sobre la recta, pasan por un foco y son tangentes a la circunferencia focal. Al tener su centro sobre la recta y pasar por un foco, pasarán por el simétrico de dicho foco respecto de la recta y el problema se reducirá a buscar circunferencias que pasando por dos puntos (foco y simétrico) son tangentes a la focal, es decir, dos puntos de paso (pertenencia a un haz elíptico) y una condición de tangencia respecto de la circunferencia focal: Problema fundamental de tangencias.

Igual que obtenemos los puntos de una recta podemos relacionar las tangentes y los puntos de tangencia como se aprecia en la siguiente figura. Al ser la recta “r” tangente a la cónica, se puede deducir que es “la bisectriz” de los radios focales ρ1 y ρ2, como veremos más adelante.

¿Serías capaz de deducirlo tú?

Geometría métrica

Related Posts

  • Cónicas : Elipse como lugar geométricoCónicas : Elipse como lugar geométrico El estudio de las cónicas se puede realizar desde diferentes enfoques geométricos. Uno de las análisis más usado es el que las determina a partir de secciones planas en un cono de revolución. A partir de esta definición es posible inferir propiedades métricas de estas curvas, además […]
  • Elipses y Parábolas a nuestro alrededor [Alumnos]Elipses y Parábolas a nuestro alrededor [Alumnos] Un tipo de trabajo recurrente en los blogs que han desarrollado mis alumnos ha consistido en la búsqueda e identificación de la geometría en todos los aspectos de su realidad cotidiana, dándose cuenta de la importancia de la misma. Las curvas cónicas que se estudian en el apartado de […]
  • Cónica definida por sus dos focos y un puntoCónica definida por sus dos focos y un punto Uno de los primeros problemas que podemos resolver basándonos en la definición de cónica como "lugar geométrico de los centros de circunferencias que pasando por un punto fijo (foco) son tangentes a una circunferencia (circunferencia focal de centro el otro foco)" es el de determinación […]
  • Centro proyectivo de dos Haces  [Interactivo] [Geogebra]Centro proyectivo de dos Haces [Interactivo] [Geogebra] Una cónica (puntual) es el lugar geométrico de los puntos de intersección de dos haces proyectivos. Este modelo se ha podido comprobar con un modelo variacional del eje proyectivo realizado con Geogebra.
  • Geometría métrica : Inversión : Aplicación a la resolución de problemas de tangencias y angularesGeometría métrica : Inversión : Aplicación a la resolución de problemas de tangencias y angulares La inversión es una transformación que permite resolver problemas con condiciones angulares. Su aplicación puede ser directa o servir para reducir los problemas tratados a otros más sencillos de naturaleza conocida. Los diferentes enfoques con los que podemos tratar un problema serán […]
  • Geometría métrica : Generalización del problema fundamental de tangencias : Geometría métrica : Generalización del problema fundamental de tangencias : Hemos resuelto el que hemos denominado problema fundamental de tangencias cuando se presenta con condiciones de tangencia respecto de una circunferencia o de una recta. Conceptualmente podemos suponer que ambos problemas son el mismo, si consideramos a la recta como una circunferencia de […]