PIZiadas gráficas

PIZiadas gráficas

Mi mundo es la imagen.

Geometría métrica : Haz elíptico de circunferencias

elipticoAl definir un haz de circunferencias como un conjunto simplemente infinito que cumplían una restricción basada en la potencia, clasificábamos los haces en función de la posición relativa de sus elementos.

Los haces de circunferencias elípticos se encuentran entre estas familias de circunferencias. Veremos cómo determinar elementos que les pertenecen.

Dadas dos circunferencias secantes en un par de puntos, el eje radical “e” de las circunferencias coincide con la cuerda común a ambas circunferencias. Esta recta es perpendicular a la que contiene los centros de las circunferencias.

Las infinitas circunferencias que pasan por un par de puntos, determinan un haz de circunferencias elíptico. Los puntos comunes a todas ellas se denominan puntos fundamentales del haz

El eje radical de cualquier pareja de circunferencias de este haz es la recta e.

haz__eliptico

Todos los centros de las circunferencias del haz se encuentran en una recta, b, denominada recta base del haz.

Determinar una circunferencia del haz elíptico que pasa por un punto P

De las infinitas circunferencias de una haz elíptico, sólo una pasa por un punto dado. Veamos cómo determinar el centro de una circunferencia del haz que pase por un punto P cualquiera.

punto_de_paso

La circunferencia buscada tendrá su centro O1 en la recta base, b, y pasará por los puntos fundamentales A y B, así como por P, por lo que también lo tendrá en la mediatriz de estos puntos.

mediatriz

La solución, su centro, se determina por lo tanto mediante la intersección de dos lugares geométricos, la recta base y la mediatriz del segmento AP que contiene a dos puntos de paso.

Determinar las circunferencias del haz elíptico que son tangentes a una recta dada

La condición de tangencia viene determinada por una recta t cualquiera que no coincida ni con la recta base b ni con el eje radical e. El haz puede quedar definido por sus puntos fundamentales A y B por los que pasan todas las circunferencias que le pertenecen.

tangente_eliptico

Para resolver el problema buscaremos un punto Cr, del eje radical e, que tenga igual potencia respecto de las circunferencias del haz, y que pertenezca, a su vez, a la recta t ya que ésta última es el eje radical de las circunferencias que le son tangentes. Vemos pues, que Cr es el centro radical de la recta t (circunferencia de radio infinito) y las circunferencias del haz parabólico.

solucion_tangente_eiptico

Como se aprecia en la figura, la potencia de Cr respecto de todas las circunferencias del haz la podemos determinar encontrando la tangente (al cuadrado) a cualquier circunferencia del haz (en este caso la de diámetro AB). Esta distancia es la que habrá también a los puntos de tangencia de las soluciones buscadas. Tenemos dos soluciones ya que podemos llevar esta distancia Cr-O a ambos lados de Cr sobre la recta t.

Determinar las circunferencias del haz elíptico que son tangentes a una circunferencia dada

La generalización del problema la tenemos cuando la condición de tangencia es respecto de una circunferencia t cualquiera.

tangente_circunferencia_eliptico

En este caso, de nuevo, determinaremos un punto Cr que tenga igual potencia respecto de la circunferencia que marca la condición de tangencia y cualquiera de las del haz elíptico, por lo que debe encontrarse en su eje radical.

centro_radical_eliptico

Las soluciones pasarán por los puntos T1 y T2 situados sobre las tangentes trazadas desde Cr, ya que se encuentran a distancia la raíz de la potencia que hemos calculado como en el caso anterior.

solucion_final_eliptico_tangente

Los centros de las soluciones se encontraran alineados con el centro de la circunferencia t y los correspondientes puntos de contacto.

Haz conjugado

Por último, podemos ver en la figura siguiente el haz conjugado (ortogonal) de un haz elíptico, que, como analizaremos posteriormente, es otro hiperbólico de recta base el eje radical del anterior.

Haces_conjugados

Geometría métrica

Related Posts

  • Geometría métrica : Haz hiperbólico de circunferenciasGeometría métrica : Haz hiperbólico de circunferencias Al definir un haz de circunferencias como un conjunto simplemente infinito que cumplían una restricción basada en la potencia, clasificábamos los haces en función de la posición relativa de sus elementos. Los haces de circunferencias hiperbólicos se encuentran entre estas familias de […]
  • Geometría métrica : Haz parabólico de circunferenciasGeometría métrica : Haz parabólico de circunferencias Al definir un haz de circunferencias como un conjunto simplemente infinito que cumplían una restricción basada en la potencia, clasíficábamos los haces en función de la posición relativa de sus elementos. Los haces de circunferencias parabólicos se encuentran entre estas familias de […]
  • Determinación de un segmento conocido su punto medio [Solución]Determinación de un segmento conocido su punto medio [Solución] Al plantear un problema de geometría métrica podemos abordar su resolución con diferentes estrategias. para ilustrar uno de estos métodos vamos a resolver el de determinar un segmento del que se conoce su punto medio junto con otras restricciones adicionales. En particular […]
  • Geometría métrica : Inversión de haces de circunferenciasGeometría métrica : Inversión de haces de circunferencias La transformación mediante inversión de elementos agrupados en formas geométricas puede tener interés para usar la inversión como herramienta de análisis en problemas complejos. En este caso estudiaremos la transformación de los "haces de circunferencias corradicales" mediante diferentes […]
  • Geometría métrica : Eje radical de dos circunferenciasGeometría métrica : Eje radical de dos circunferencias Los lugares geométricos sirven para determinar la solución de problemas con restricciones geométricos. Entre las condiciones más utilizadas se encuentran las de naturaleza angular y dentro de éstas las de ortogonalidad. Dadas dos circunferencias, el conjunto simplemente infinito de […]
  • inversionGeometría métrica : Inversión en el plano La inversión es una transformacion homográfica que conserva las relaciones angulares (es conforme). Su principal aplicación en geometría es la determinación de problemas con condiciones angulares entre los que se encuentran la resolución de ejercicios con tangencias.