PIZiadas gráficas

PIZiadas gráficas

Mi mundo es la imagen.

Geometría métrica : Concepto de “Potencia de un punto respecto de una circunferencia”

Potencia de un punto respecto de una circunferenciaEl concepto de potencia de un punto respecto de una circunferencia permite relacionar las nociones estudiadas en los teorema de Thales y Pitágoras y es la puerta para el estudio de los problemas de tangencias y transformaciones como la inversión.

Usaremos los conceptos de arco capaz sobre un segmento en nuestras demostraciones, por lo que se sugiere su repaso.
Este concepto se basa en el producto de dos segmentos y, como veremos mas adelante, permite determinar algunos lugares geométricos de gran importancia como por ejemplo el eje radical de dos circunferencias.

Definición de potencia

La primera definición de potencia se basa en determinar la máxima y mínima distancia a una circunferencia y obtener su producto métrico.
La potencia W de un punto P respecto de una circunferencia c es el producto de la mayor por la menor distancia del punto P a la circunferencia c.
Potencia de un punto respecto de una circunferencia

Potencia de un punto respecto de una circunferencia

En la figura vemos que la potencia del punto P respecto de la circunferencia es el producto de los segmentosm” y “n“, mínima y máxima distancia desde el punto a la circunferencia. Estos segmentos se encuentran en el diámetro de la circunferencia que contiene al punto P.

Relaciones métricas de la Potencia

Podemos relacionar métricamente el concepto básico de potencia respecto de una circunferencia, mediante el teorema de pitágoras, con el segmento de tangencia que se obtiene desde el punto a la circunferencia.

La Potencia de un punto P respecto de una circunferencia es igual a la diferencia de cuadrados entre la distancia del punto P al centro C de la circunferencia y el radio R de la misma; también al cuadrado del segmento PT de tangente si P es exterior.

potencia generalizada

Si tenemos en cuenta que el segmento “m” es igual a la distancia “d” del punto “P” al centro “C” de la circunferencia “c“, menos el radio “R” de la misma (d-R), y que el segmento “n” es la suma de “d” y “R” (d+R) tendremos que:

Expresión de potencia

Como la suma de dos variables multiplicada por la diferencia es la diferencia de sus cuadrados, vemos que la potencia “W” es igual a la diferencia de los cuadrados de la distancia “d” y del radio “R” de la circunferencia. Esta expresión nos recuerda al cateto de un triángulo rectángulo, cuyo cuadrado es igual a la diferencia de cuadrados de la hipotenusa y del otro cateto (lado l).

Si el punto P es interior a la circunferencia no existirá el segmento de tangencia, pero podemos establecer igualmente la relación con los lados de un triángulo pitagórico.

potencia de un punto interior

La Potencia de un punto P respecto de una circunferencia es igual a la diferencia de cuadrados de la distancia del punto P al centro C de la circunferencia y el radio R de la misma y también al cuadrado del segmento de semicuerda PT perpendicular a PC si P es interior.

relaciones métricas de la potencia para puntos interiores

Potencia de un punto (Wikipedia)

Geometría métrica

Related Posts

  • generalizacion concepto potenciaGeometría métrica : Generalización del concepto de “Potencia” El concepto de potencia de un punto respecto de una circunferencia se basa en el producto de la mayor por la menor de las distancias de un punto a una circunferencia. Estos valores de la distancia se dan en la cuerda que contiene al centro de la circunferencia y al punto, es decir, en […]
  • Geometría métrica : Eje radical de dos circunferenciasGeometría métrica : Eje radical de dos circunferencias Los lugares geométricos sirven para determinar la solución de problemas con restricciones geométricos. Entre las condiciones más utilizadas se encuentran las de naturaleza angular y dentro de éstas las de ortogonalidad. Dadas dos circunferencias, el conjunto simplemente infinito de […]
  • Geometría métrica : Arco capaz sobre un segmentoGeometría métrica : Arco capaz sobre un segmento La relación entre el ángulo inscrito y el ángulo central en una circunferencia permite obtener un lugar geométrico de gran importancia por sus numerosas aplicaciones en la geometría métrica; este lugar geométrico se denomina arco capaz.
  • Concepto de Potencia [ Prezi ]Concepto de Potencia [ Prezi ] El concepto de potencia es fundamental para resolver de forma estructurada los problemas de tangencias y su generalización en los casos de angularidad. Este concepto, que se aplicará inicialmente al problema fundamental de tangencias, nos permitirá utilizar un proceso sistemático de […]
  • El problema del campo de fútbolEl problema del campo de fútbol Un curioso problema, que suelo proponer en clase a mis alumnos, en el que podemos utilizar los conocimientos geométricos aprendidos al estudiar el concepto de potencia, es el de determinar la posición óptima de disparo a una portería de fútbol desde una trayectoria dada.
  • Geometría métrica: Lugares geométricos. Solución I (Selectividad 2014 – B1)Geometría métrica: Lugares geométricos. Solución I (Selectividad 2014 – B1) Vamos a resolver el problema de determinar un cuadrado, cuyos vértices se encuentran sobre elementos geométricos dados. En particular fijaremos los correspondientes a una de sus diagonales sobre una recta, otro de los vértices en una recta diferente y el cuarto vértice sobre una circunferencia.