PIZiadas גרף

PIZiadas גרף

העולם שלי הוא פנימה.

Archivo de febrero 2015

הטלי גיאומטריה: תרכיב קטרים קוטבי

ראינו את ההגדרה של קטרים תרכיב קוטבי, ניתן לנתח את הרעיון של הנחיות תרכיב:

תרכיב קטרים קוטבי: הם קוטב שני נקודת פסולים מצומדת.
בואו נראה איך אפשר להתייחס המושג הזה עם autopolar של המשולש אצל Involutions מסדר שני בסדרה.

הטלי גיאומטריה: כיוונים נזווג

המושגים של קוטביות ראינו כדי לקבוע את הקוטב של נקודה על הקו, נתת לנו להשיג המשולש autopolar הגדרת חרוט שלושה involuciuones שונים עם 4 נקודות, הם מאפשרים לנו לקדם בהגדרת פרויקטיבי של האלמנטים הבולטים שלה, קטרים, מרכז וציר.

אחד היסודות של “כיוונים נזווג”

הטלי גיאומטריה: משיק מנקודה חרוט

ראינו כיצד קובעים את נקודות החיתוך של קו ישר עם חרוט שהוגדרו על-ידי חמש נקודות. ואז נראה את הבעיה כפולה.

בעיה זו מורכבת הקובע את אפשרי שני ישר משיק מנקודה חרוט שהוגדרו על-ידי המשיק חמש.

הטלי גיאומטריה : מרכז אינוולוציה

ראינו כיצד לקבוע את הציר של לפוף ו, מבוסס על הרעיון של קוטב של נקודה ביחס שתי שורות, Involutions אפשרי אשר ניתן להגדיר 4 נקודות, עם שלהם בהתאמה פירי אינוולוציה, קבלת המשולש autopolar הקשורים אשר הם יחסים הרמוניים של cuadrivertice מלא.

במאמר זה אנו נמשיך לשפר את האלמנטים האלה, בפרט, הקודקודים משולש autopolar שיקבעו מה שמכונה “מרכז אינוולוציה”.

הטלי גיאומטריה: משולשים Autopolares ב Involutions מסדר שני בסדרה

חיבור 4 נקודות של proyectivamente חרוט על-ידי Involutions נוכל לקבוע את הציר של לפוף של אלה proyectividades.

בהתחשב ארבע הנקודות הדרוש להגדרת לפוף, אפשר לבקש Involutions שונים רבים יכולים ליצור ביניהם.

הקוטב של נקודה ביחס שתי שורות

הרעיון של קוטביות הוא מקושר ההפרדה הרמונית.

תפיסה זו היא בסיסית מצפני האלמנטים היסודיים של חתכי, כמרכז שלה, קטרים תרכיב, צירים ….

זה יאפשר ליצור שינויי צורה חדשה אשר כוללים homographies, מתאמים חשיבות רבה.

הטלי גיאומטריה: Cuadrivertice מלא

באחד בגיאומטריה פרויקטיבית ביותר בשימוש בצורות גיאומטריות הוא של “Cuadrivertice מלא”, או כפול שלה “הטבעת מלא”.

De forma general, cuadrivertice נוצר על ידי ארבע נקודות, הלאה המטוס הזה הדמות 8 דרגות חופש (2 קואורדינטות עבור כל קודקוד) הם יהיה צורך 8 הגבלות כדי לקבוע בטון אחד.

השיטה בעמדה שקרי. היישום חופפים סדרה של הסדר השני.

המודלים התיאורטיים של גאומטריה פרויקטיבית יכול להיות מציע בעיות שאינן של יישום ישיר. יהיה לנו את זה “להתלבש” לכן תרגילים להסיק בתלמיד עוד יותר את ניתוח, טיפול רוחבי של הידע: באפשרותך להחיל עליהם ללמוד לפתור בעיה זו?.
לאחר ניתוח בפירוט את הפעולות עם חופפים סדרה של הסדר השני, בואו נראה דוגמה של היישום אשר לא ייחשבו בהשגת משיקים חדש או נקודות המגע של חרוט.

הטלי גיאומטריה: לפוף ב חופפים סדרה של הסדר השני : ציר אינוולוציה

העתקות involutionary הם יישומים bijective עניין רב כדי ליישם מבנים גיאומטריים, מאז הם לפשט אותם במידה ניכרת.

אנחנו נלמד איך מוגדרת של לפוף בסדרת מסדר שני, עם בסיס של חרוט, השוואת המודל החדש של טרנספורמציה עם סדרת חופפים של הסדר השני למד בעבר.

מהי לפוף בגיאומטריה?

ב גאומטריה, אנחנו מדברים לעתים קרובות עם תנאי זה, במקרים מסוימים, הם לא מספיק חשובים בשפת היומיום. זה מוביל ליצירת מחסומים של פרשנות של כמה מושגים פשוטים.

אחד המונחים אשר נשאלתי מספר פעמים בשיעור של “אינוולוציה”. אנו מגדירים את אינוולוציה.

מהו לפוף?

הטלי גיאומטריה: יישום של קורות חופפים מסדר שני

תעשה את המושגים פרויקטיבי פיתחנו ללמוד חופפים של הסדר השני, הבסיס שלהם הוא חרוט, הם יאפשרו לפתור את הבעיות של נחישות אנשי הקשר במשיקים של חרוט שהוגדרו על-ידי המשיק חמש או הגבלות חמש באמצעות השילוב של טנגנס ונקודות המשיק בהתאמה שלהם. נוכל לראות את היישום של Brianchon נקודת בסוג זה של בעיות