그래프 PIZiadas

그래프 PIZiadas

내 세계가 속한.

사영 기하학 카테고리

사영 기하학: 원추형 센터를 얻기

원추형 센터를 들어 그 극과 극 존중해야합니다. 우리가 접선과 접점을 알고있는 경우 특정 구조에서 단순화. 우리는 세 개의 접선과 각각의 접점이 알려진 경우 그 즉시 특히입니다 볼 수 있습니다, 원추의 정의상로부터 얻은 5 개시된 데이터 및 기술을 적용 접선과 접하는 점을 결정.

두 시리즈의 투영 축 [대화 형] [브라]

자신의 불변을 분석하는 도구로 만든 사영 기하학 구조는 그래픽 표현이 분야의 연구에 매우 유용합니다. 우리는 소프트웨어와 함께 만든이 구조물 중 하나가 표시됩니다 “GeoGebra”, 두 시리즈의 사영 사영 축을 결정 특히.

사영 기하학: 어원이 극 지 직경

우리는 극 지 어원이 직경의 정의 보았다, 어원이 방향 개념 분석을 감안할 때:

어원이 극 지 직경: 그들은 극 지 두 활용된 부적절 한 포인트.
어떻게 우리는 삼각형의 autopolar 2 차 시리즈에 Involutions에서 본로이 개념을 연관 수 있는 보자.

사영 기하학: 어원이 방향

선에 점의 극 지 결정 하기 위해 우리가 본 적이 극성의 개념, 4 점 원뿔 설정 3 개의 다른 involuciuones의 autopolar 삼각형을 얻을 수 있었습니다 있다, 그들은 주목할 만한 요소가 투영 정의에 사전 수, 직경, 센터 및 축.

기본 사항 중 하나는의 “어원이 방향”

사영 기하학: 지점에서 탄젠트는 원뿔

5 점에 의해 정의 된 원추형으로 직선의 교차점의 포인트를 확인 하는 방법을 알아보았다.. 우리 다음 이중 문제를 볼 것 이다.

이 문제는 가능한 두 직선 탄젠트 점에서 5 탄젠트에 의해 정의 된 원뿔을 결정 이루어져.

사영 기하학 : 퇴 화 센터

우리는 대 합 축 확인 하는 방법을 본 고, 두 줄에 대해 포인트의 극 지의 개념에 따라, 4 개의 포인트에서 설정할 수 있는 가능한 Involutions, 대 합의 그들의 각각 샤프트로, 전체 cuadrivertice의 조화로 운 관계는 관련 된 autopolar 삼각형을 얻기.

이 문서에서 우리는 이러한 요소를 강화 나갈 것입니다., 특히 무엇을 결정 하는 autopolar 삼각형 꼭지점에 알려져 “퇴 화 센터”.

사영 기하학: 2 차 시리즈에서 Involutions에 Autopolares 삼각형

이러한 proyectividades의 대 합 축 결정 Involutions에 의해 원뿔 proyectivamente의 4 개의 점을 연결.

4 포인트 주어진 정의 퇴 화 하는 데 필요한, 우리는 많은 다른 Involutions 그들 사이 설정할 수 요청할 수 있습니다..

사영 기하학: 전체 Cuadrivertice

기하학적 인 숫자는에서 가장 많이 사용 되 투영 기하학의 하나는의 “전체 Cuadrivertice”, 또는 그것의 듀얼 “전체 반지”.

일반적으로, cuadrivertice 4 포인트에 의해 형성 된다, 이 그림은 비행기에 8 자유도 (2 각 꼭지점 좌표) 그리고 그들은 필요 하 게 됩니다. 8 한 콘크리트를 결정 하는 제한.

거짓 위치 메서드. 겹치는 두 번째 순서의 일련의 응용 프로그램.

사영기하학의 이론적 모델 직접 응용 프로그램의 있지 않은 문제 제안 수 있습니다.. 우리는 그 “드레스” 따라서 학생에서 유추 하는 연습 더 분석 및 지식의 통과 치료: 그들은이 문제를 해결 하기 위해 학습을 지원할 수 있습니까?.
시리즈의 두 번째 순서를 겹치는 작업 자세히 분석 한 후, 새로운 접선 한 원뿔의 접촉의 포인트를 얻기에서 구성 하지 않는 응용 프로그램의 예를 보자.

사영 기하학: 시리즈의 두 번째 순서를 중복에 대 합 : 축 퇴 화

Involutionary 변형은 기하학적 구조물에 적용할 큰 관심 어플리케이션 bijective, 이후 그들은 그들을 상당히 단순화.

우리가 볼 수 어떻게 2 차 시리즈에는 대 합을 정의, 기지는 원뿔, 이전에 공부 하는 두 번째 순서의 겹치는 시리즈와 변화의 새로운 모델 비교.