그래프 PIZiadas

그래프 PIZiadas

내 세계가 속한.

Categorías Proyectividad

포인트를 반전. 10 얻기위한 구조물 [나는- 메트릭]

난 항상 내 학생들을 하나 개의 권장 사항은 다른 방식으로 같은 문제를 해결하는 것입니다, 거의 유사한 진술로 동일한 문제를 여러 번 수행하는 대신.

각 경우에 메트릭 또는 투영 방식에 문제가 있습니다..

지난 수업 중 하나에서 우리는 점의 역함수를 얻는 것을 제안했습니다., 중심과 거듭제곱이 알려진 역전에서. 제안된 성명은 다음과 같았습니다:

그림의 제곱이 주어지면, 꼭지점 중 하나가 반전 중심이고 반대쪽 꼭지점이 이중 점인 경우, 점 A의 역수를 결정 (인접한 꼭지점).

사영 기하학: 이쌍 직경 폴라 결합체에서 원뿔 샤프트를 얻기

원뿔의 축은 서로 직교 인 공액 극선 직경입니다..

우리는 두 개의 공액 극 직경을 기억할 것입니다, 그것은 반드시 중심이나 원뿔형을 통과 할 것입니다, 두 가지 부적절한 지점의 극성입니다 (무한대에 위치합니다) 그것들을 결합하게하십시오, 즉, 각 지점의 극성에는 다른 점이 포함되어 있습니다..

이러한 요소의 요소는 직경의 진화를 결정합니다 (극선) 우리가 두 개의 광선 부부와 해당 상 동체 학자를 알면 정의 될 수있는 결합.

두 시리즈의 투영 축 [대화 형] [브라]

자신의 불변을 분석하는 도구로 만든 사영 기하학 구조는 그래픽 표현이 분야의 연구에 매우 유용합니다. 우리는 소프트웨어와 함께 만든이 구조물 중 하나가 표시됩니다 “GeoGebra”, 두 시리즈의 사영 사영 축을 결정 특히.

고등학교에서 그리기의 교수 당신이 필요 마스터

보조 기술 그리기의 교수 되기, 어떻게 해야할지?

내 학생의 많은 수 그리기의 교수를 어떻게 해야할지 부탁 했습니다., 대학에서 가르치는 과정. 대답은 항상 같은 마 선생님 무엇? 같은 되는 연구소 교수가 되었다 대학 교수.

사영 기하학: 어원이 극 지 직경

우리는 극 지 어원이 직경의 정의 보았다, 어원이 방향 개념 분석을 감안할 때:

어원이 극 지 직경: 그들은 극 지 두 활용된 부적절 한 포인트.
어떻게 우리는 삼각형의 autopolar 2 차 시리즈에 Involutions에서 본로이 개념을 연관 수 있는 보자.

사영 기하학: 어원이 방향

선에 점의 극 지 결정 하기 위해 우리가 본 적이 극성의 개념, 4 점 원뿔 설정 3 개의 다른 involuciuones의 autopolar 삼각형을 얻을 수 있었습니다 있다, 그들은 주목할 만한 요소가 투영 정의에 사전 수, 직경, 센터 및 축.

기본 사항 중 하나는의 “어원이 방향”

사영 기하학: 지점에서 탄젠트는 원뿔

5 점에 의해 정의 된 원추형으로 직선의 교차점의 포인트를 확인 하는 방법을 알아보았다.. 우리 다음 이중 문제를 볼 것 이다.

이 문제는 가능한 두 직선 탄젠트 점에서 5 탄젠트에 의해 정의 된 원뿔을 결정 이루어져.

사영 기하학 : 퇴 화 센터

우리는 대 합 축 확인 하는 방법을 본 고, 두 줄에 대해 포인트의 극 지의 개념에 따라, 4 개의 포인트에서 설정할 수 있는 가능한 Involutions, 대 합의 그들의 각각 샤프트로, 전체 cuadrivertice의 조화로 운 관계는 관련 된 autopolar 삼각형을 얻기.

이 문서에서 우리는 이러한 요소를 강화 나갈 것입니다., 특히 무엇을 결정 하는 autopolar 삼각형 꼭지점에 알려져 “퇴 화 센터”.

사영 기하학: 2 차 시리즈에서 Involutions에 Autopolares 삼각형

이러한 proyectividades의 대 합 축 결정 Involutions에 의해 원뿔 proyectivamente의 4 개의 점을 연결.

4 포인트 주어진 정의 퇴 화 하는 데 필요한, 우리는 많은 다른 Involutions 그들 사이 설정할 수 요청할 수 있습니다..

사영 기하학: 전체 Cuadrivertice

기하학적 인 숫자는에서 가장 많이 사용 되 투영 기하학의 하나는의 “전체 Cuadrivertice”, 또는 그것의 듀얼 “전체 반지”.

일반적으로, cuadrivertice 4 포인트에 의해 형성 된다, 이 그림은 비행기에 8 자유도 (2 각 꼭지점 좌표) 그리고 그들은 필요 하 게 됩니다. 8 한 콘크리트를 결정 하는 제한.