PIZiadas图形

PIZiadas图形

我的世界是英寸.

Archivo de febrero 2018

射影几何: 两对直径极性的结合获得锥形轴

锥形轴是那些缀合物极性直径是互相正交.

我们记得,两极共轭直径, que pasarán necesariamente por el centro O de la cónica, son las polares de dos puntos impropios (situados en el infinito) que sean conjugados, 亦即, que la polar de cada uno de esos puntos contiene al otro.

Estas parejas de elementos determinan una involución de diámetros (polares) conjugados que quedará definida cuando conozcamos dos parejas de rayos y sus correspondientes homólogos.

由两个焦点和切线定义的锥形

我们通过锥形的圆周解决了两个焦点和焦点定义的圆锥曲线的测定.

使用相同的概念的一个问题是确定一个已知的圆锥其焦点及其切线. Veremos este problema en el caso de una elipse.

学习与安德鲁·鲁米斯(Andrew Loomis)绘画

Existen muchos manuales de dibujo con diferentes métodos para iniciarnos y perfeccionar nuestra técnica de representación. Uno de los primeros que recuerdo son los cuadernillos de dibujo del pintor Joan Ferrer Miró.

William Andrew Loomis fue un ilustrador de la primera mitad del siglo XX que, además de su obra gráfica, nos dejó una serie de libros para aprender a dibujar. El enfoque práctico de estos manuales junto a la gradual dificultad de los ejercicios propuestos son dos características que los hacen especialmente útiles para iniciarse en el dibujo con lápiz.

系统二面角: 投影线

Podemos definir la distancia de un punto P a una recta r como la menor de las distancias desde el punto P a los infinitos puntos de la recta r. Para determinar esta distancia deberemos obtener la recta perpendicular a la recta r desde el punto P y obtener su punto I de intersección. La distancia d de P a I será la mínima distancia desde este punto a la recta r.

Este problema puede tener dos enfoques diferentes para determinar la solución buscada.

In memóriam: Forges

Forges nos ha dejado.

Sus personajes seguirán con nosotros recordándonos nuestra historia con ese genial tono surrealista.

Desde este blog, nuestro reconocimiento al dibujante, 他对这个国家的特殊愿景的微妙之处.

老师永远再见, 我们将始终将角色的鼻子作为图形特征.