PIZiadas gráficas

PIZiadas gráficas

Mi mundo es la imagen.

Recta perpendicular a un plano

recta perpendicularUno de los problemas básicos que debemos aprender al estudiar los Sistemas de Representación son aquellos en los que aparecen elementos que son perpendiculares a otros: Recta perpendicular a plano o a recta y plano perpendicular a otro plano. Todos los problemas de determinación de distancias hacen uso de los conceptos de ortogonalidad que desarrollaremos a continuación.

Separaremos en general el problema de determinación de la dirección normal a un plano o a rectas del establecimiento de su posición. Podemos hacer pasar una recta perpendicular por lo tanto por cualquier punto del espacio ya que en un primer acercamiento a este problema sólo nos interesa la orientación de dicha recta.

Recta perpendicular a un plano

Veamos cómo determinar la recta perpendicular a un plano en Sistema Diédrico trabajando directamente en las proyecciones principales del sistema. También podremos resolver mediante proyecciones auxiliares, aunque no es el objeto del estudio en este caso.

Recordaremos un teorema espacial que será necesario para encontrar una recta perpendicular a un plano:

Una recta es perpendicular a un plano si lo es a dos rectas de dicho plano que no sean paralelas entre sí.

Para determinar una recta perpendicular a un plano buscaremos aquellos casos en que la recta, siendo perpendicular a todas las rectas del plano, se proyecte perpendicular a alguna de ellas que sean conocidas.

Al estudiar la línea de máxima pendiente de un plano, aplicando el teorema de las tres perpendiculares , vimos que ésta se proyectaba perpendicular a las rectas paralelas a su intersección con el plano de proyección.

Linea de máxima pendiente

En efecto, esta línea “lmp” se encuentra en el plano A-A’-I que es perpendicular a la recta intersección del plano que la contiene con el plano de proyección, en este caso la horizontal “h”. En general las rectas perpendiculares a la recta “h” se proyectarán como rectas perpendiculares a su proyección sobre el plano horizontal:

Toda recta perpendicular a una recta paralela a un plano de proyección se proyecta perpendicular a dicha recta en este plano de proyección.

La recta normal al plano será perpendicular a las horizontales del plano, ya que lo es a todas sus rectas. También será perpendicular a su línea de máxima pendiente “lmp”. La proyección horizontal de esta recta será perpendicular a la de las horizontales por ser rectas paralelas al plano de proyección.

perpendicular a plano

En efecto, la recta “n” normal al plano se encuentra en un plano proyectante que contiene a la línea de máxima pendiente respecto del plano de proyección, por lo que su proyección sobre este plano coincidirá con ella y por lo tanto será perpendicular a las horizontales.

plano proyectante recta normal

Vemos pues que para determinar la normal podemos determinar su dirección en la proyección horizontal, ya que es perpendicular a las horizontales. Con un razonamiento similar podemos concluir que en la proyección vertical será perpendicular a las rectas del plano que son paralelas a este plano de proyección (rectas frontales).

Supongamos que el plano queda definido mediante una horizontal “h” y una frontal “f”.

plano por rectas notables

La dirección normal al plano se puede determinar por las condiciones de ortogonalidad respecto de las rectas notables del plano, horizontal y frontal, tal y como hemos visto. Al existir infinitas rectas perpendiculares a un plano, una por cada uno de sus puntos, buscaremos una cualquiera para la determinación de su dirección.

normal a rectas notables

Vemos que es necesario contar con las proyecciones de las rectas notables citadas (horizontales y frontales) para determinar la dirección normal a un plano. En un caso general no las tendremos ya que el plano puede ser definido de muy variadas formas: tres puntos, punto y recta, dos rectas, condiciones angulares o de paralelismo y puntos de paso ….

plano

Podemos determinar las rectas paralelas a los planos de proyección que necesitemos. En este caso obtendremos una horizontal de plano cualquiera así como una recta frontal (paralela al vertical). En la figura se han determinado las que pasan por un punto “Q” concreto.

plano y rectas notables

La obtención de la normal es inmediata tal y como ya hemos visto.

plano y rectas notables y perpendicular

A partir de estos conceptos podemos plantear nuevos problemas como el de determinación de la distancia desde un punto a un plano. ¿Sabrías resolverlo?

Sistemas_de_representacion

Sistemas_de_representacion

Related Posts

  • Sistema Diédrico: Teorema de las tres perpendicularesSistema Diédrico: Teorema de las tres perpendiculares Uno de los teoremas más importantes de la geometría descriptiva es el denominado "Teorema de las tres perpendiculares", que establece una relación entre dos rectas perpendiculares cuando una de ellas es paralela a un plano de proyección.
  • Fundamentos del Sistema DiédricoFundamentos del Sistema Diédrico Hemos visto al presentar los Sistemas de Representación que la geometría descriptiva es el conjunto de técnicas de carácter geométrico que permite representar el espacio tridimensional sobre una superficie bidimensional. En particular veremos con detalle el denominado "Sistema […]
  • Línea de máxima pendienteLínea de máxima pendiente Al estudiar la verdadera magnitud de una recta vimos que podíamos calcular a su vez el ángulo de esta recta respecto de un plano de proyección, es decir, su pendiente. En un plano podemos determinar infinitas rectas con diferente dirección contenidas en el mismo. Una de estas rectas […]
  • Sistema Diédrico: Proyección de puntos del planoSistema Diédrico: Proyección de puntos del plano ¿Sabrías obtener a partir una proyección de un punto perteneciente a un plano otra proyección sobre el plano diédrico que la completa? Por ejemplo, si nos dan la proyección horizontal y la vertical de un plano y un punto en esta última ¿Cómo determinaríamos la proyección sobre el plano […]
  • Sistema Diédrico: Verdadera magnitud de la rectaSistema Diédrico: Verdadera magnitud de la recta Al proyectar una recta ortogonalmente sobre un plano de proyección, su proyección, en general, es más pequeña que la medida original. Dada una recta (segmento limitado por dos puntos) queremos determinar su verdadera magnitud así como el ángulo que forma con los planos de proyección.
  • Sistema Diédrico: Rectas de un plano paralelas a los de proyecciónSistema Diédrico: Rectas de un plano paralelas a los de proyección Dentro de la categoría denominada "rectas notables" del plano se encuentran las que son paralelas a los planos de proyección diédricos. Estas rectas son de gran utilidad en la operatividad que vamos a desarrollar en este sistema de representación.