PIZiadas圖形

PIZiadas圖形

我的世界是英寸.

Categorías Geometría proyectiva

射影幾何: 獲得錐形中心

Para obtener el centro de la cónica será necesario disponer de polos y polares respecto de la misma. En particular las construcciones se simplifican si conocemos tangentes y puntos de contacto. Veremos que es especialmente inmediato si se conocen tres tangentes y sus respectivos puntos de contacto, obtenidos a partir de la definición de la cónica mediante 5 datos y la aplicación de las técnicas expuestas para determinar tangentes y puntos de tangencia.

射影幾何: 從兩對共軛極徑中獲取圓錐的軸

Los ejes de una cónica son aquellos diámetros polares conjugados que son ortogonales entre si.

Recordaremos que dos diámetros polares conjugados, que pasarán necesariamente por el centro O de la cónica, son las polares de dos puntos impropios (situados en el infinito) que sean conjugados, 亦即, que la polar de cada uno de esos puntos contiene al otro.

Estas parejas de elementos determinan una involución de diámetros (polares) conjugados que quedará definida cuando conozcamos dos parejas de rayos y sus correspondientes homólogos.

圓錐由其兩個焦點和切線定義

Hemos resuelto la determinación de una cónica definida por sus dos focos y un punto mediante la circunferencia focal de la cónica.

Un problema que usa idénticos conceptos es el de la determinación de una cónica conocidos sus focos y una de sus tangentes. Veremos este problema en el caso de una elipse.

由兩個焦點和點定義的錐形

Uno de los primeros problemas que podemos resolver basándonos en la definición de cónica comolugar geométrico de los centros de circunferencias que pasando por un punto fijo (foco) son tangentes a una circunferencia (circunferencia focal de centro el otro foco)” es el de determinación de la cónica a partir de sus dos focos y un punto.

La definición clásica quedará determinada en cuanto se obtengan los vértices A1 y A2 de la cónica.

圓錐如軌跡中心的圓周的切線

Hemos visto que el estudio de las cónicas se puede realizar desde diferentes enfoques geométricos. 特別是, al iniciar el análisis de las cónicas hemos definido la elipse como lugar geométrico, decíamos que:

La Elipse es el lugar geométrico de los puntos de un plano cuya suma de distancias a dos puntos fijos, denominados Focos, tiene un valor constante.

Esta definición métrica de esta importante curva nos permite abordar su estudio relacionándolo con el de las circunferencias tangentes, conocido como el “阿波羅尼奧斯問題” en alguna de sus versiones. Cuando abordemos el estudio de las parábola o de la hipérbola volveremos a replantear el problema para generalizar estos conceptos y reducir los problemas alProblema fundamental de tangencias en el caso recta”, Ø埃爾 “Problema fundamental de tangencias en el caso circunferencia”, 亦即, la determinación de una circunferencia de unHaz corradicalcon una condición de tangencia.

錐 : Elipse como lugar geométrico

El estudio de las cónicas se puede realizar desde diferentes enfoques geométricos. Uno de las análisis más usado es el que las determina a partir de secciones planas en un cono de revolución.

A partir de esta definición es posible inferir propiedades métricas de estas curvas, además de nuevas definiciones de las mismas.

射影幾何: 極地的共軛直徑

我們已經看到極性的共軛直徑的定義, 給出了共軛方向的概念,分析:

極地的共軛直徑: 它們是極地兩個共軛不當點.
讓我們看看我們可以如何與這一概念與三角形的 autopolar 中對合以二階系列見.

射影幾何: 交叉口直行和錐形

La definición proyectiva de la cónica permite empezar a resolver problemas clásicos de determinación de nuevos elementos de la cónica (nuevos puntos y tangentes en ellos), así como encontrar la intersección con una recta o la tangente desde un punto exterior. 更多或更少的複雜的不同方法能解決這些問題,在概念上與更多或更少費力的路徑.

然後,我們會看到如何確定交叉口的一條直線的兩個可能的點與二次曲線由五個點定義.

射影幾何: 圓錐投影的定義

圓錐曲線, 進一步治療的基礎上切線的概念的度量, 有一個射影的治療,依賴於集和投射叢的概念.

我們將看到圓錐曲線的兩個定義適用於 “世界點” Ø人 “直世界” 根據利, 在什麼被定義為定義 “點” 在 “切線” 圓錐曲線.