투영의 중심이 빔 [대화 형] [브라]
원뿔 (시간을 잘 지키는) 두 개의 투영 빔의 교차 지점의 궤적이고.
이 모델은 GeoGebra의로 만든 투영 샤프트의 변분 모델을 보여왔다.
원뿔 (시간을 잘 지키는) 두 개의 투영 빔의 교차 지점의 궤적이고.
이 모델은 GeoGebra의로 만든 투영 샤프트의 변분 모델을 보여왔다.
우리는 투영면에 대하여이 라인의 각도를 계산하는 회전 수 있다고보고 라인의 실제 크기를 연구함으로써, 즉, 그 기울기.
비행기에서 우리는 그 안에 포함 된 다른 방향으로 끝 라인을 확인할 수 있습니다. 이러한 라인 중 하나는 투영면에 대해 최대 각도 조건을 형성.
나는 내 수업에 올릴 첫 번째 문제 중 하나는 내가 부르는 “세 가지 방법으로 캡”.
설명 기하학과 착수에 대한 소개는 학생들의 교육에 대한 큰 관심의 공간 분석을 만들기 위해.
문제는 당신이 나무 상자에 만든 세 개의 구멍을 연결하는 역할을 모자를 결정하는 것입니다.
소위 범주 “주목할 만한 라인” 비행기는 프로젝션 diedricos의 평면에 평행한. 이 라인은 우리가 표현이 시스템에서 개발 작업에 매우 유용 합니다..
설명 기하학의 가장 중요 한 법칙 중 하나는 소위 “3 수직의 정리”, 때 그들 중 하나는 투영 평면에 평행한 두 줄 수직 사이의 관계 설정.
얻을 수는 소속 투영에서 플랫 포인트 전체에 비행기 2 면에 다른 프로젝션? 예를 들면, 만약 우리에 게 determinaríamos 수평 평면에 투영으로 후자에 수평 투영 및 평면 및 포인트의 세로 줄?
비행기 3 정렬된 포인트에 의해 결정, 그래서 직선 계획에 새로운 포인트를 추가 하는 것은 그것 것을 정의할 수 있습니다.. 이 경우에 우리는 표현의 이러한 계획 지원의 독립적인 예측 되려면 투영의 각 비행기에 적어도 2 개의 관련된 차원을 줄 것 이다. 지도 그들에 게 속하는 항목 나타내는 배우게 됩니다..
우리는 극 지 어원이 직경의 정의 보았다, 어원이 방향 개념 분석을 감안할 때:
어원이 극 지 직경: 그들은 극 지 두 활용된 부적절 한 포인트.
어떻게 우리는 삼각형의 autopolar 2 차 시리즈에 Involutions에서 본로이 개념을 연관 수 있는 보자.
선에 점의 극 지 결정 하기 위해 우리가 본 적이 극성의 개념, 4 점 원뿔 설정 3 개의 다른 involuciuones의 autopolar 삼각형을 얻을 수 있었습니다 있다, 그들은 주목할 만한 요소가 투영 정의에 사전 수, 직경, 센터 및 축.
기본 사항 중 하나는의 “어원이 방향”
5 점에 의해 정의 된 원추형으로 직선의 교차점의 포인트를 확인 하는 방법을 알아보았다.. 우리 다음 이중 문제를 볼 것 이다.
이 문제는 가능한 두 직선 탄젠트 점에서 5 탄젠트에 의해 정의 된 원뿔을 결정 이루어져.
우리는 대 합 축 확인 하는 방법을 본 고, 두 줄에 대해 포인트의 극 지의 개념에 따라, 4 개의 포인트에서 설정할 수 있는 가능한 Involutions, 대 합의 그들의 각각 샤프트로, 전체 cuadrivertice의 조화로 운 관계는 관련 된 autopolar 삼각형을 얻기.
이 문서에서 우리는 이러한 요소를 강화 나갈 것입니다., 특히 무엇을 결정 하는 autopolar 삼각형 꼭지점에 알려져 “퇴 화 센터”.