PIZiadas graphiques

PIZiadas graphiques

Mon monde est po.

Problème d'Apollonius : ccc

Tout des problèmes de tangentes qui sont inclus sous le nom de « problèmes Apolonio » peut être réduite à l'une des variantes étudiées les plus élémentaires de tous: le problème fondamental des tangentes (PFT).

En todos estos problemas nos plantearemos como objetivo fundamental simplificar el problema que se proponga a uno de estos casos fundamentales, mediante el cambio de las restricciones que lo definen a otras basadas en conceptos de ortogonalidad y/o diametralidad.

Dans ce cas nous allons étudier ce que nous appelons "Cas d'Apolonio ccc", à savoir, le cas du problème de tangence dans lequel les données sont données au moyen de conditions de tangence à trois circonférences (ccc).

Nous pouvons donc posé le problème de la manière suivante:

Determinar las circunferencias que son tangentes a tres circunferencias.

De las 8 posibles soluciones que tiene este problema en el caso más general, analizaremos el caso más sencillo representado en la siguiente figura en la que t1 y t2 son las soluciones buscadas y c1, c2 y c3 los datos de partida.

Supongamos el caso en el que las tres circunferencias dato tienen diferente diámetro y no se cortan entre sí, siendo exteriores cada una a las otras dos.

le centros de inversión positivos de dos circunferencias son los de homotecia que las relacionan. En la figura I12 es el centro de inversión entre las circunferencias C1 y C2, siendo e1 su circunferencia de autoinversión (radio la raíz de la potencia de inversión).

La circunferencias tangentes a C1 y C2 (isogonales), como las buscadas, serán dobles en esta inversión y por lo tanto serán ortogonales a e1, circonférence autoinversión.

Las tres circunferencias de autoinversión se encuentran en un haz elíptico de circunferencias, por lo que las circunferencias dobles en las inversiones descritas deberán ser ortogonales a estas circunferencias de autoinversión y por lo tanto pertenecer al haz conjugado, en este caso un haz hiperbólico de circunferencias.

Las circunferencias buscadas tendrán por lo tanto su centro en el eje radical del haz elíptico formado por las circunferencias de autoinversión, y tendrán por eje radical la recta base del haz anterior.

Deberemos encontrar por lo tanto una circunferencia del haz hiperbólico de puntos límites L1 y L2, puntos fundamentales del haz elíptico, que sea tangente a cualquiera de las circunferencias dato. Por ejemplo C1.

Hemos reducido el problema a la determinación de una circunferencia de un haz que sea tangente a otra circunferencia: Generalización del Problema Fundamental de Tangencias.

Para resolver el problema determinaremos el Centro Radical, CR, de las circunferencias del haz al que pertenece la solución y de la circunferencia que establece la condición de tangencia.

Los puntos de tangencia los obtendremos determinando la potencia de dicho centro respecto de la circunferencia dato o, qui est le même, obteniendo la circunferencia de centro el centro radical que es ortogonal a la circunferencia dato . Los puntos T1 y T2 son los de corte entre estas circunferencias.

Los centros de las soluciones se encontrarán en la recta base del haz hiperbólico al que pertenecen las soluciones y alineados con los puntos de tangencia y el centro de la circunferencia dato (ya que dos circunferencias tangentes tienen alineados sus centros y el punto de tangencia).

 

La solución puede comprobarse que es tangente a las tres circunferencias dato.

 

Géométrie métrique