PIZiadas图形

PIZiadas图形

我的世界是英寸.

度量几何 : 切线的根本问题 : PPR

Problema fundamental de tangencias. Circunferencia Tangente a recta que pasa por dos puntos经典相切的问题进行了研究,寻找每个案例研究几何结构.

Los conceptos de potencia de un punto respecto de una circunferencia permiten abordar los problemas con un enfoque unificador, 使任何相切或发病率语句一般可降低到一个更通用的根本问题切线定名 (PFT).

El PFT puede enunciarse como el problema de determinación de una circunferencia que pasa por dos puntos y es tangente a una recta o bien a otra circunferencia.

Un mayor grado de abstracción permitiría sustituir los puntos de paso por una condición de pertenencia a un haz, aunque este enfoque lo dejaremos pendiente para más adelante.

Resolveremos el primer caso de estudio enunciando el problema como:

Determinar las circunferencias que pasan por los puntos y son tangentes a la recta ŗ

Datos para definir el Problema fundamental de tangencias

Datos para definir el Problema fundamental de tangencias

Análisis del problema fundamental de tangencias

En la figura de análisis se aprecia que la circunferencia Ç 中心 Ç puede ser una de las soluciones del problema ya que pasa por los puntos y es tangente a la recta ŗ. En esta figura ,en la que representamos la circunferencia solución que estamos buscando, podemos determinar propiedades que servirán para deducir una construcción que nos permita determinarla.

Fundamentos del problema fundamental de tangencias PFT

Fundamentos del problema fundamental de tangencias PFT

La recta que pasa por los puntos corta a la recta ŗ 在一个点 P. La potencia de este punto respecto de la circunferencia es:

Potencia de un punto

Potencia de un punto

De la expresión anterior deducimos que si obtenemos el valor del segmento PT (raiz de la potencia) podemos obtener el punto Ŧ de tangencia y el problema se reduce a determinar la circunferencia que pasa por tres puntos: , Ŧ (su centro estará en la intersección de dos mediatrices).

解决问题.

Determinaremos el valor de la potencia por medio de una de las construciones usadas para resolver medias proporcionales:

Como la potencia del punto P respecto de cualquier circunferencia que pase por los puntos es la misma, podemos utilizar una circunferencia auxiliar de cualquier radio que pase por estos puntos, como la representada en la figura de centro O1, situado en la mediatriz de .

El valor de la potencia lo determinaremos obteniendo el segmento de tangencia desde P a esta circunferencia auxiliar; para ello, construiremos un arco capaz de 90 度 sobre el segmento PO1

resolucion problema fundamental de tangencias

Resolucion problema fundamental de tangencias

El valor del segmento de tangencia ( P-T1) lo llevaremos sobre la recta ŗ para determinar el punto Ŧ de tangencia mediante un simple giro de centro en P.

Solucion del PFT

Solución del PFT

Número de soluciones

Dependiendo de la dirección en que llevemos el segmento PT obtendremos una u otra de las dos posibles soluciones al problema.

numero de soluciones

Dos soluciones

度量几何