投资: 测定具有角条件元件的表心理体操
我们已经用过一个 “心理体操台” 在研究投资的时候: 一组有助于激发推理的练习, 发展和保持灵活的头脑, 自动化流程计算和分析等.
我们现在提出提出一系列类似的问题,但旨在获得基本几何问题的解决方案。. 在这种情况下,我们将考虑搜索穿过给定点并满足相对于其他两个圆的角度条件的圆。.
我们已经用过一个 “心理体操台” 在研究投资的时候: 一组有助于激发推理的练习, 发展和保持灵活的头脑, 自动化流程计算和分析等.
我们现在提出提出一系列类似的问题,但旨在获得基本几何问题的解决方案。. 在这种情况下,我们将考虑搜索穿过给定点并满足相对于其他两个圆的角度条件的圆。.
当进行一门科学的研究时,我们可以遵循不同的学习轨迹. 相互链接的概念链将使我们能够生成抽象模型的心理表征, 促进其吸收和随后应用来解决问题.
在这些页面上,提出了两张图片,总结了在学生培训中逐步纳入该科学分支的基本概念的可能策略或顺序。.
Uno de los primeros problemas que podemos resolver basándonos en la definición de cónica como “lugar geométrico de los centros de circunferencias que pasando por un punto fijo (foco) 他们是一个圆的切线 (circunferencia focal de centro el otro foco)” es el de determinación de la cónica a partir de sus dos focos y un punto.
La definición clásica quedará determinada en cuanto se obtengan los vértices A1 y A2 de la cónica.
我们已经看到,圆锥曲线的研究,可以从不同的几何方法进行. En particular, 开始分析圆锥我们定义为椭圆轨迹, 我们说,:
椭圆是一个平面上的点的几何轨迹,该平面上的点到两个固定点的距离之和, 称为焦点, 有一个恒定值.
这条重要曲线的度量定义使我们能够通过将其与切圆的曲线联系起来来进行研究。, 被称为 “阿波罗尼的问题” 在它的一些版本中. 当我们研究抛物线或双曲线时,我们将重述问题以概括这些概念并将问题简化为 “Problema fundamental de tangencias en el caso recta”, o el “Problema fundamental de tangencias en el caso circunferencia”, 亦即, la determinación de una circunferencia de un “Haz corradical” con una condición de tangencia.
La actual tecnología nos permite generar documentos con contenido enriquecido. En este caso vamos a ver cómo se puede incorporar un modelo 3D a un documento en formato “PDF”, conservando la información tridimensional del modelo, lo que nos permitirá cambiar su visualización de forma interactiva.
La transformación mediante inversión de elementos agrupados en formas geométricas puede tener interés para usar la inversión como herramienta de análisis en problemas complejos. En este caso estudiaremos la transformación de los “haces de circunferencias corradicales” mediante diferentes inversiones que los transformen. Más adelante necesitaremos estas transformaciones para resolver el problema de “Apolonio” (circunferencia con tres restricciones de tangencia) o la “Generalización del problema de Apolonio” (circunferencias con tres restricciones angulares).
Al estudiar la verdadera magnitud de una recta vimos que podíamos calcular a su vez el ángulo de esta recta respecto de un plano de proyección, 亦即, su pendiente.
En un plano podemos determinar infinitas rectas con diferente dirección contenidas en el mismo. Una de estas rectas formará la máxima condición angular respecto del plano de proyección.
成为技术图画在中学教授, 该怎么办?
我的许多学生问我怎样做才能成为教授的绘画, 当然,我在大学教. 答案永远是相同的做老师什么? 它不是一样被大学教授成为学院教授.
应用程序 “Geogebra” 它允许您开发动态的结构,我们可以修改形成它的元素的位置, 保持这些数字的几何约束条件, 允许同一节目的不变量. 此工具可以是有价值的帮助,为学生.
教授 Juan Alonso Alriols 合作,在引进这一工具的教义中 “图形表达” 马德里理工大学大学, 提供高利息的例子. 你可以看到在他工作的一个例子 “动态施工的双重原因四个点” 伴随着此条目, 这样增加了驱动程序的案文,供我们的课.
我们已经看到定义的元素的有序四倍, 表征直线四个点或从飞机通过一个值或特征捆绑四连胜, 由这种元素的两个黑社会的比率结果.
我们然后考虑困难的问题,, 给出了属于第一类同一窗体的三个元素, 系列或梁, 获取确定四分体的特定值的第四个因素.
Vamos a resolver el problema de determinar un cuadrado, cuyos vértices se encuentran sobre elementos geométricos dados.
En particular fijaremos los correspondientes a una de sus diagonales sobre una recta, otro de los vértices en una recta diferente y el cuarto vértice sobre una circunferencia.