射影几何 : 对合的中心
我们已经看到如何确定对合轴和, 基于极性的某点相对两条线的概念, 可能对合,可以从四个点设置, 与他们各自的轴的对合, 获得 autopolar 三角关联哪些 cuadrivertice 充分和谐关系.
在这篇文章中,我们将继续加强这些元素, 特别是在将确定什么 autopolar 三角形顶点被称为 “对合的中心”.
我们已经看到如何确定对合轴和, 基于极性的某点相对两条线的概念, 可能对合,可以从四个点设置, 与他们各自的轴的对合, 获得 autopolar 三角关联哪些 cuadrivertice 充分和谐关系.
在这篇文章中,我们将继续加强这些元素, 特别是在将确定什么 autopolar 三角形顶点被称为 “对合的中心”.
黄宗智变换是兴趣的应用程序的极大,在几何结构中应用的双射, 因为他们大大简化他们.
我们将会看到如何定义对合二阶系列, 与圆锥状的基部, 比较重叠系列的二阶以前研究转型的新模式.
在几何中,我们说话常常与条款,, 在某些情况下, 他们不是在日常语言中非常重要. 这会导致在一些简单的概念解释造成障碍.
我曾被多次问班的条款之一是的 “对合”. 我们定义对合.
对合是什么?