PIZiadas gráficas

PIZiadas gráficas

Mi mundo es la imagen.

Sistema Diédrico: Proyección del plano

proyeccion_planoDespués de ver los fundamentos del Sistema Diédrico, con la proyección de un punto sobre dos planos de proyección ortogonales, independizando el sistema de la línea de tierra cuando tenemos dos o más puntos, hemos visto cómo obtener la proyección de una recta y la determinación de la tercera proyección de un segmento.

Un plano queda determinado por tres puntos no alineados, por lo que añadiendo un nuevo punto a las proyecciones de una recta podremos definirlo. En este caso podremos dar al menos dos cotas relativas sobre cada plano de proyección con objeto de independizar las proyecciones de dichos planos soporte de la representación.

proyecciones del plano sobre planos paralelos

Vemos que, de nuevo, la proyección del plano sobre dos planos paralelos es invariante en el caso de la proyección cilíndrica (en este caso ortogonal).

Igual que vimos con las proyecciones de la recta, las proyecciones diédricas de un plano quedarán suficientemente determinadas con la proyección de dicho plano sobre otros dos que formen un sistema diédrico, es decir, que sean ortogonales. Lo normal será dar las proyecciones sobre un plano vertical y otro horizontal, aunque sería igualmente posible dar un vertical y un perfíl.

proyecciones diédricas

A partir de estas dos proyecciones es muy fácil determinar la tercera sobre un nuevo plano ortogonal a los anteriores ya que, como en la determinación de la tercera proyección de la recta, se conservarán las cotas (z), alejamientos (y) y las desviaciones (x) respecto de los planos de proyección.

tercera proyección del plano

Si el plano está determinado mediante tres puntos (o dos rectas que se cortan) podremos encontrar las proyecciones en las tres representaciones (Horizontal, Vertical y Perfil) de nuevos puntos o rectas que le pertenezcan.

Determinar proyección de un punto

¿Sabrías obtener a partir una proyección de un punto perteneciente a un plano las otras dos proyecciones sobre los restantes planos diédricos? Aunque el punto parece estar fuera del plano no te dejes engañar, el plano es infinito.

Sistemas_de_representacion

Sistemas_de_representacion

Related Posts

  • Sistema Diédrico: Tercera proyección de la rectaSistema Diédrico: Tercera proyección de la recta Las proyecciones principales de la recta sobre dos planos diédricos (planos horizontal y vertical) permiten determinar otras proyecciones ortogonales sobre nuevos planos. Veremos cómo determinar de forma genérica una nueva proyección a partir de otras dos. Más adelante analizaremos su […]
  • Sistema Diédrico: Verdadera magnitud de la rectaSistema Diédrico: Verdadera magnitud de la recta Al proyectar una recta ortogonalmente sobre un plano de proyección, su proyección, en general, es más pequeña que la medida original. Dada una recta (segmento limitado por dos puntos) queremos determinar su verdadera magnitud así como el ángulo que forma con los planos de proyección.
  • Sistema Diédrico: Teorema de las tres perpendicularesSistema Diédrico: Teorema de las tres perpendiculares Uno de los teoremas más importantes de la geometría descriptiva es el denominado "Teorema de las tres perpendiculares", que establece una relación entre dos rectas perpendiculares cuando una de ellas es paralela a un plano de proyección.
  • Recta perpendicular a un planoRecta perpendicular a un plano Uno de los problemas básicos que debemos aprender al estudiar los Sistemas de Representación son aquellos en los que aparecen elementos que son perpendiculares a otros. Todos los problemas de determinación de distancias hacen uso de estos conceptos. Veamos cómo determinar la recta […]
  • Sistema diédrico: Fundamentos de las Proyecciones auxiliares, cambios de planoSistema diédrico: Fundamentos de las Proyecciones auxiliares, cambios de plano Para representar un objeto en el sistema diédrico normalmente usaremos la proyecciones sobre los tres planos del triedro de referencia, tal y como hemos visto al estudiar los fundamentos del sistema diédrico. En general será suficiente con utilizar únicamente dos de los tres posibles […]
  • Fundamentos del Sistema DiédricoFundamentos del Sistema Diédrico Hemos visto al presentar los Sistemas de Representación que la geometría descriptiva es el conjunto de técnicas de carácter geométrico que permite representar el espacio tridimensional sobre una superficie bidimensional. En particular veremos con detalle el denominado "Sistema […]