그래프 PIZiadas

그래프 PIZiadas

내 세계가 속한.

Categorías Tenas

사영 기하학: 점의 상관의 건설

우리는 보았다 요소의 순서가 상관의 정의, 직선 특성화 일부 4 점 또는 비행기 값 이나 특성을 통해 번들에서 4 개의 직선, 이러한 요소에 의해 결정 두 triads의 비율에 대 한 결과.

다음의 문제를 생각 하는 우리, 같은 형태의 첫 번째 범주에 속하는 세 가지 요소를 부여, 시리즈 또는 빔, Tetrad 특정 값을 결정 하는 네 번째 요소를 얻을.

사영 기하학: 투영 빔에 일치하는 요소의 결정

우리는 사영 기하학에서 일을 배워야 첫 번째 문제 중 하나는 동종 요소의 결정입니다, 시리즈 및 번들에있는 염기의 조항에 모두, 또는 분리가 중첩.

사용되는 방법론의 연구를 계속 진행하면 이중 모델보기 기반 요소를 사용 “포인트”, 직선과 예, 또한 각각의 빔의 기초가 분리되어 있음을 관련시킬 가정.

사영 기하학: 의 교차 직선 테이퍼

La definición proyectiva de la cónica permite empezar a resolver problemas clásicos de determinación de nuevos elementos de la cónica (nuevos puntos y tangentes en ellos), así como encontrar la intersección con una recta o la tangente desde un punto exterior. Estos problemas pueden resolverse por diferentes métodos más o menos complejos conceptualmente y con trazados más o menos laboriosos.

Veremos a continuación cómo determinar los dos posibles puntos de intersección de una recta con una cónica definida por cinco puntos.

사영 기하학: 두 번째 순서의 중복 시리즈

일련의 염기이면 원추형 시리즈 제 주문.

겹치는 계열 정의 된 우선 순서의 일련의 경우에서와 같이, 우리는 같은 기준으로 두 번째 순서의 두 가지 사이 proyectividades을 설정할 수 있습니다 (이 경우 원추형).

사영 기하학: 겹치는 모양 첫 번째 순서

사영 겹치는 모양 투영 모양의 특별한 경우입니다, 는 공통베이스를 공유하는 동일한 유형의 요소 관해서.

예를 들면, 겹치는 두 시리즈는 기하학적 인 도형의 기초와 같은 줄이있을 것이다, 같은 정점 직선의 두 빔 (동심 번들) 과 동일한 축을 중심으로 평면 중첩이 빔 (coaxiales).

사영 기하학: 두 번째 순서의 일련의 둘레

원은 원뿔 축이 길이가 동일하다, 따라서 우리는 그것의 편심이 제로라고 말할 수 있습니다 (편심 = 0). 우리는 두 번째 순서의 하나의 시리즈로 원을 처리 할 수​​ 있습니다, 광선 합동 대응의 두 빔의 교차에 의해 얻어진 (동일하지만 회전.) 이 치료는 투영 도구로 사용하고 동심 시리즈 겹치는 두 요소의 결정을 해결 할 도움이 될 것입니다.

사영 기하학: 원뿔 투영의 정의

원뿔 곡선 (이차 곡선) 곡선, 접선의 개념에 기초하여 메트릭의 추가 처리, 세트와 투영 번들의 개념에 의존하는 투영 치료를.

우리는 적응 원뿔 곡선 (이차 곡선)의 두 가지 정의를 볼 수 있습니다 “세계 지점” 오 알 “직선의 세계” 관심에 따라, 정의로 정의됩니다 무엇에 “포인트” o “접선의” 원뿔 곡선.

사영 기하학: 두 투영 번들 투영 센터

사영 모델 이원성의 법칙을 사용하면 다른 이전에 공제의 속성 및 듀얼 정리 세트를 얻을 수 있습니다. 사영 케이스 시리즈의 동종 요소를 획득하는 것은 perspectival 허용 중간 pespectividades를 획득하여 수행 한 우리는 우리라는 것을받을 수 있나요 “투영 축”. 우리는 사영 번들의 경우 그 볼, 듀얼 이유는 사영 센터를 결정하기 위해 우리를 이끌고.

사영 기하학: 두 시리즈의 사영 투영 축

운영 전망의 관계는 소유의 개념으로 감소, 그래서 우리는 사영 모델은 동종 요소를 취득 간소화에 맞게 이러한 기술을 사용합니다.
우리가 어떻게 두 개의 투영 시리즈를 정의 할 수 있습니다? 상동 요소 projectivity를 결정할 필요가 얼마나 있는지에?우리는 어떻게 동종 요소를 얻을 수 있습니다?

사영 기하학: perspectivity는

사영 기초는 "요소의 트리플 주문"의 정의를 기반으로하고있다 “십자가 비율을 정의하기위한 원수”, 불리는 관계 “관점” 동일하거나 서로 다른 자연의 요소 사이.
이러한 관점 관계, 즉 돌기 표현 시스템을 결정하는데 사용될, 두 사영 사업자에서 정의:
투사
섹션