# Metric geometry: Loci. Arco able : Problema II Solución

Vamos a resolver un sencillo problema planteado anteriormente en el que deberemos determinar un lugar geométrico básico para la determinación de su solución, un problema en el que hay que encontrar un punto del plano que cumpla unas condiciones geométricas dadas.

La intersección de dos lugares geométricos planos nos determinará un número finito de puntos que serán las posibles soluciones del problema.

# Metric geometry : Determining radio circumferences known angular conditions

Problems of determination with known radius circles that meet geometric constraints are exercises of a similar nature to those seen for straight. Estos se resuelven mediante la intersección de lugares geométricos.

En particular, if we consider the line as infinite radius circumference, estaremos por tanto en el caso estudiado de determinación de rectas con condiciones angulares.

# Metric geometry : Determination of lines with angular conditions

The determination of a line in the plane requires two geometric constraints; among the employed conditions are the pass or membership of a point and angular type (form an angle with another line or circle).

Discuss the angular relation of a given condition to provide a method of obtaining solutions for reducing problems tangency circumference, valid for one or two angular conditions.

# Metric geometry: Notions of angles

Geometric elements in the plane intersecting, lines and circles, can characterize its intersection by a value called angle.

The notion of angle between two lines is the most elementary, and serves as a reference to define the angle between line and circle or two circles forming.