# Metric geometry: Loci. Arco able : Problema II Solución

Vamos a resolver un sencillo problema planteado anteriormente en el que deberemos determinar un lugar geométrico básico para la determinación de su solución, un problema en el que hay que encontrar un punto del plano que cumpla unas condiciones geométricas dadas.

La intersección de dos lugares geométricos planos nos determinará un número finito de puntos que serán las posibles soluciones del problema.

# Metric geometry: Loci. Arco able : Problema II

Las técnicas de solución de problemas basadas en la intersección de lugares geométricas se suelen asociar a problemas sencillos de la geometría clásica.

En estos casos es el planteamiento de la solución lo que entraña la mayor complejidad, ya que los lugares geométricos derivados suelen ser elementos geométricos sencillos.
Determinar un punto P desde el que se observe bajo el mismo ángulo a los tres lados de un triángulo ABC.

# Arco able on a segment : Solución [I]

Let the solution to the problem proposed arc capable application, that we proposed with the following statement:

Determine two lines that are based on a point P outside a line r, an angle formed between "alpha" and cut given to the line as a segment of length "L".

# Arco able on a segment : Example [I]

The arc geometry applications capable of an angle on a given segment are many and varied:

From the proof of a theorem, the intermediate solution of a problem or direct application in a case, We can see this construction repeatedly widespread.

# The problem with football

A curious problem, I usually suggest to my students in class, where we can use geometric knowledge learned by studying the concept of power, is to determine the optimal position of shooting a soccer goal from a given path.

# Metric geometry : Angles on the circumference : Central and inscribed

In metric geometry measuring two concepts on which is based its axiomatic model: measures linear and angular measurements.
The linear measurement is based on the Pythagorean theorem and the relationship between these measures in Thales.
The angular measurement from the relations expressed in a circle and with the above can describe the magnitude of geometric figures.