射影幾何 : 退縮の中心
退縮の軸を決定する方法を見ていると, 2 つの行を基準としてポイントの極座標の概念に基づく, 4 つのポイントから設定することが可能なインボリューション, 退縮のそれぞれのシャフトで, 完全 cuadrivertice の調和のとれた関係である関連付けられている autopolar の三角形を取得します。.
この資料でこれらの要素を強化していきます, 特に何を決定する autopolar の三角形の頂点として知られています。 “退縮の中心”.
退縮の軸を決定する方法を見ていると, 2 つの行を基準としてポイントの極座標の概念に基づく, 4 つのポイントから設定することが可能なインボリューション, 退縮のそれぞれのシャフトで, 完全 cuadrivertice の調和のとれた関係である関連付けられている autopolar の三角形を取得します。.
この資料でこれらの要素を強化していきます, 特に何を決定する autopolar の三角形の頂点として知られています。 “退縮の中心”.
Involutionary 変換は大きな関心を幾何学的構成に適用されるアプリケーションの有理数, 以来、彼らはそれらをかなり簡素化.
我々 が表示されますどのように二次シリーズで退縮を定義, 円すいベース, 以前学んだ第 2 順序の重複する一連の変換の新しいモデルを比較します。.
幾何学で私達の条件でしばしば話すこと, 場合によっては, 日常の言語で十分に重要ではないです。. これはいくつかの単純な概念の解釈の障壁を作成するのにつながる.
クラスで数回を求められている条件の 1 つは、 “退縮”. 退縮を定義します。.
退縮は何ですか?