PIZiadas gráficas

PIZiadas gráficas

Mi mundo es la imagen.

El problema del campo de fútbol

campo_de_futbolUn curioso problema, que suelo proponer en clase a mis alumnos, en el que podemos utilizar los conocimientos geométricos aprendidos al estudiar el concepto de potencia, es el de determinar la posición óptima de disparo a una portería de fútbol desde una trayectoria dada.

Podemos suponer que el jugador que realiza el disparo tiene suficiente potencia para poder realizarlo desde cualquiera de los puntos de su trayectoria, siendo por tanto el más adecuado aquél que le ofrezca mayor ángulo de visualización de la portería como veremos a continuación.

Para simplificar el enunciado, sin restar generalidad al problema, supondremos que el jugador se encuentra en un punto P del campo y corre paralelo a la banda (según la dirección d). La portería quedará determinada por el segmento AB.

Trayectoria_del_jugador

La posición del jugador le permitirá ver a la portería bajo un cierto ángulo “alfa“. Nuestro problema será por lo tanto encontrar un nuevo punto de la trayectoria “d” desde el que este ángulo sea máximo.

angulo_de_visión

Al repasar los conceptos de “arco capaz” sobre un segmento, podemos concluir que éste punto será aquél que pertenezca a una circunferencia que pase por los puntos A y B, que a la vez sea tangente a la recta d para que su diámetro sea mínimo.

Este planteamiento nos lleva a resolver el “Problema fundamental de tangencias” en el caso de dos puntos y una recta, que solucionábamos mediante los conceptos de potencia de un punto respecto a una circunferencia.

La recta AB será el eje radical de todas las circunferencias que pasan por dichos puntos, mientras que la recta “d” lo será de todas las que son tangentes a esta recta. El punto Cr de intersección de ambas rectas tendrá igual potencia respecto de las que pasan por A y B, y las tangentes a “d“, por lo que podremos determinar este valor de potencia que será la distancia al punto solución.

Solucion_campo_de_futbol

En la figura se ha resuelto con una circunferencia auxiliar de diámetro AB. La potencia desde Cr será igual al cuadrado del segmento de tangencia que pasará por el punto T. El punto solución, S, distará esta longitud a Cr.

Geometría Métrica

Related Posts

  • Geometría métrica : Obtención del Eje radical de dos circunferenciasGeometría métrica : Obtención del Eje radical de dos circunferencias El eje radical de dos circunferencias es ellugar geométrico de los puntos de un plano que tienen igual potencia respecto de dos circunferencias. Es una recta que tiene dirección perpendicular a la línea de centros de las circunferencias. Para determinar dicho eje será necesario por lo […]
  • generalizacion concepto potenciaGeometría métrica : Generalización del concepto de “Potencia” El concepto de potencia de un punto respecto de una circunferencia se basa en el producto de la mayor por la menor de las distancias de un punto a una circunferencia. Estos valores de la distancia se dan en la cuerda que contiene al centro de la circunferencia y al punto, es decir, en […]
  • Geometría métrica : Concepto de “Potencia de un punto respecto de una circunferencia”Geometría métrica : Concepto de “Potencia de un punto respecto de una circunferencia” El concepto de potencia de un punto respecto de una circunferencia permite relacionar las nociones estudiadas en los teorema de Thales y Pitágoras y es la puerta para el estudio de los problemas de tangencias y transformaciones como la inversión. Usaremos los conceptos de arco capaz […]
  • Concepto de Potencia [ Prezi ]Concepto de Potencia [ Prezi ] El concepto de potencia es fundamental para resolver de forma estructurada los problemas de tangencias y su generalización en los casos de angularidad. Este concepto, que se aplicará inicialmente al problema fundamental de tangencias, nos permitirá utilizar un proceso sistemático de […]
  • Geometría métrica : Generalización del problema fundamental de tangencias : Geometría métrica : Generalización del problema fundamental de tangencias : Hemos resuelto el que hemos denominado problema fundamental de tangencias cuando se presenta con condiciones de tangencia respecto de una circunferencia o de una recta. Conceptualmente podemos suponer que ambos problemas son el mismo, si consideramos a la recta como una circunferencia de […]
  • Geometría métrica : Eje radical de dos circunferenciasGeometría métrica : Eje radical de dos circunferencias Los lugares geométricos sirven para determinar la solución de problemas con restricciones geométricos. Entre las condiciones más utilizadas se encuentran las de naturaleza angular y dentro de éstas las de ortogonalidad. Dadas dos circunferencias, el conjunto simplemente infinito de […]