두 줄에 관하여 점의 극 지
극성의 개념 고조파 분리 연결.
이 개념은 기본 추세선의 기본 요소 측정, 중심으로, 어원이 직경, 축 ….
그것은 homographies 및 중요성의 상관 관계를 포함 하는 새 변환 설정 하면.
극성의 개념 고조파 분리 연결.
이 개념은 기본 추세선의 기본 요소 측정, 중심으로, 어원이 직경, 축 ….
그것은 homographies 및 중요성의 상관 관계를 포함 하는 새 변환 설정 하면.
기하학적 인 숫자는에서 가장 많이 사용 되 투영 기하학의 하나는의 “전체 Cuadrivertice”, 또는 그것의 듀얼 “전체 반지”.
일반적으로, cuadrivertice 4 포인트에 의해 형성 된다, 이 그림은 비행기에 8 자유도 (2 각 꼭지점 좌표) 그리고 그들은 필요 하 게 됩니다. 8 한 콘크리트를 결정 하는 제한.
사영기하학의 이론적 모델 직접 응용 프로그램의 있지 않은 문제 제안 수 있습니다.. 우리는 그 “드레스” 따라서 학생에서 유추 하는 연습 더 분석 및 지식의 통과 치료: 그들은이 문제를 해결 하기 위해 학습을 지원할 수 있습니까?.
시리즈의 두 번째 순서를 겹치는 작업 자세히 분석 한 후, 새로운 접선 한 원뿔의 접촉의 포인트를 얻기에서 구성 하지 않는 응용 프로그램의 예를 보자.
Involutionary 변형은 기하학적 구조물에 적용할 큰 관심 어플리케이션 bijective, 이후 그들은 그들을 상당히 단순화.
우리가 볼 수 어떻게 2 차 시리즈에는 대 합을 정의, 기지는 원뿔, 이전에 공부 하는 두 번째 순서의 겹치는 시리즈와 변화의 새로운 모델 비교.
기하학, 우리는 자주 용어를 이야기 하는, en algunos casos, 그들은 일상 생활 언어에서 충분히 중요 하지 않습니다.. 이것은 몇 가지 간단한 개념의 해석에 장벽을 만들고 이끌어.
클래스에서 여러 차례를 부탁 받 았지 용어 중 하나는의 “대 합”. 우리는 대 합을 정의.
퇴 화가 무엇입니까?
당신은 두 번째 순서의 겹치는 공부 하 고 개발 했습니다 투영 개념, 그 자료는 원뿔은, 그들은 5 탄젠트 또는 탄젠트 및 그들의 각각 접선 포인트의 결합을 통해 5 개 제한에 의해 정의 된 원추형의 측면에 접촉의 점 결정의 문제를 해결 하기 위해 허용. 우리는이 유형의 문제에서 Brianchon 포인트의 구현 볼
접선 원추형 공부 하기, 특히 두 번째 순서의 광선 사이 proyectividades 같은 곡선에 첨가 하 고, 우리는 성취의 이중 연구에 의존 수 있습니다 시리즈의 두 번째 순서를 겹치는.
우리가 두 번째 순서의 겹치는 시리즈 공부 하 개발한 투영 개념, 그 자료는 원뿔은, 그들은 5 점 또는 탄젠트의 그들의 각각 포인트와 포인트 및 접선의 결합을 통해 5 개 제한에 의해 정의 된 원추형의 탄젠트 점의 결정의 문제를 해결 하기 위해 허용.
응용 프로그램 “브라” 동적 구조물에 그것을 형성 하는 요소의 위치를 수정할 수 있습니다. 개발할 수 있습니다., 이 숫자의 기하학적 구속 조건 유지, 동일한 쇼의 고정 허용. 이 도구는 학생 들을 위한 귀중 한 도움이 될 수 있습니다..
교수 Juan Alonso Alriols의 가르침에이 도구의 도입에 협력 “Expresión Gráfica” 마드리드의 폴 리 테크닉 대학에서, 높은 관심에 대 한 예제를 제공 하. 그의 작품의 예를 볼 수 있는 “4 포인트에 대 한 두 번 이유의 동적 건설” 이 항목을 동반, 그 클래스에 사용 하기 위해 드라이버 텍스트 추가.
우리는 보았다 요소의 순서가 상관의 정의, 직선 특성화 일부 4 점 또는 비행기 값 이나 특성을 통해 번들에서 4 개의 직선, 이러한 요소에 의해 결정 두 triads의 비율에 대 한 결과.
다음의 문제를 생각 하는 우리, 같은 형태의 첫 번째 범주에 속하는 세 가지 요소를 부여, 시리즈 또는 빔, Tetrad 특정 값을 결정 하는 네 번째 요소를 얻을.
Vamos a resolver un sencillo problema planteado anteriormente en el que deberemos determinar un lugar geométrico básico para la determinación de su solución, un problema en el que hay que encontrar un punto del plano que cumpla unas condiciones geométricas dadas.
La intersección de dos lugares geométricos planos nos determinará un número finito de puntos que serán las posibles soluciones del problema.