PIZiadas graphiques

PIZiadas graphiques

Mon monde est po.

La robustesse des constructions géométriques dynamiques avec Geogebra: Polar d'un point d'un cercle

PolaireL'étude des disciplines de la géométrie classique peut être renforcée par l'utilisation d'outils qui permettent aux constructions qui peuvent être modifiés dynamiquement: constructions variationnelles.

Estas construcciones pueden servir para que entendamos cómo se mantienen determinadas propiedades en las relaciones geométricas que denominaremosInvariantes”, así como para verificar que determinados conceptos que damos como axiomas son válidos simplemente en determinadas condiciones. También nos ayuda a entender cómo varía una representación al cambiar la disposición de los elementos que intervienen en la misma, facilitando la generalización y comprensión profunda de los fundamentos geométricos.

l'outil “GeoGebranos servirá para ilustrar estos conceptos y demostrar la importancia del conocimiento detallado de las relaciones geométricas para asegurar la robustez de las construcciones que usamos en los razonamientos geométricos, comme, parfois, algunas construcciones pueden perder su validez.

Polar d'un point d'un cercle.

Veremos con un ejemplo relativamente sencillo cómo la utilización de una u otra construcción puede conducirnos a situaciones en los que la geometría mas básica deja de ser de aplicación.

Supongamos que tenemos una circonférence “c” de centro “O” que pasa por un determinado punto “A”, et un point “P” que en principio es exterior a esta circunferencia.

Enunciado_polar_P_c

A partir de estos datos nos planteamos determinar una droite que sea la polar de P respecto de la circunferencia c.

¿Qué es la polar de un punto respecto de una circunferencia? La respuesta a esta pregunta nos puede conducir a una u otra construcción geométrica.

Es el lugar geométrico de los extremos de los diámetros de las circunferencias que pasando por el punto P son ortogonales a la circunferencia c.

Las circunferencias que pasan por un punto y son ortogonales a otra circunferencia se encuentran agrupadas en un circonférences de faisceau. Si consideramos al punto como una circunferencia de radio nulo, los centros estarán en el eje radical de la circunferencia y el punto determinando un circonférences de faisceau elliptique (conjugado del hyperbolique formado por la circunferencia c y el punto P)

LG Diametros

Para determinar este lugar geométrico podemos obtener un punto de paso ya que sabemos que es una recta perpendicular al diámetro de la circunferencia c que con tiene al punto P (perpendicular a la recta O-P).

Mediante una recta tangente desde P a la circunferencia podemos obtener el punto T de tangencia por el que pasará la polar. La determinación de un arc en mesure de 90 degrés (ángulo recto) entre el punto P y el centro O nos permitirá obtener este punto T de tangencia por el que pasará la recta polar.

Arco capaz y Polar

La circunferencia de diámetro PT es ortogonal a la circunferencia c ya que sus radios en el punto T de contacto son ortogonales por lo que T cumple con el lugar geométrico que hemos usado para definir la recta polar.

Circunferencia ortogonal

Sin embargo esta construcción tan sencilla pierde su validez en el momento en el que el punto P pasa a ser interior a la circunferencia c, como puede observarse en la siguiente figura, ya que el arco capaz no corta a la circunferencia c. Deberemos buscar nuevos modelos que resuelvan estas posiciones.

Polar mal calculada

 

Es el lugar geométrico de los puntos conjugados de P respecto de la circunferencia c.

Recordaremos que una cuaterna de puntos (ABCD) cuyo valor es la unidad negativa se denomina cuaterna armónica, à savoir:

(ABCD)= -1

Être

(ABCD) = (ACD)/(BCD) = (AC/AD)/(BC/BD)

En su momento definíamos la polar de un punto P respecto de dos rectas a y b como el lugar geométrico de los conjugados del punto P respecto de los de intersección con “à” y “b” del haz de rectas con vértice en P.

A partir de la geometría del cuadrivertice complet podíamos obtener la recta que cumplía las condiciones solicitadas, siendo (PP ’ AB)= -1.

Polaire d'un point à l'égard de deux lignes

Este modelo nos permite realizar una nueva construcción para determinar la polar respecto de la circunferencia mediante el cuadrivértice ABCD que se puede obtener con un diámetro de la circunferencia y la cuerda AD resultado de proyectar desde P el punto A que determina el radio de nuestra circunferencia. Dans ce cas,:

(PP1AD)=(PP2BC)= -1

luego la recta que pasa por los puntos diagonales del cuadrivértice (D1 et D2) es el lugar geométrico buscado.

Puntos conjugados

Al modificar la posición del punto P se conserva la robustez del modelo, en el que ademas no ha sido necesario utilizar ninguna circunferencia (solución lineal).

Puntos conjugados 2

Existen otras soluciones que pueden ser híbridas entre las anteriores, en las que se pueden utilizar circunferencias auxiliares para determinar ejes radicales que impliquen la ortogonalidad, sabiendo que la recta O-P es además el eje radical del haz conjugado. Se deja al lector el análisis de esta nueva y simple construcción.

Polar con potencia

Modelo variacional con GeoGebra

Para terminar se añade el fichero Geogebra con la geometría dinámica que permitirá al lector experimentar variando las posiciones de los elementos.

¿Sabrías realizar una nueva construcción robusta que permitiera variar las posiciones de los elementos sin perder su validez?

 

Géométrie métrique