PIZiadas grafica

PIZiadas grafica

Il mio mondo è dentro.

Categorías Geometría proyectiva

Geometria proiettiva: Ottenendo il centro conico

Per il centro del cono sarà necessario disporre di pali e polare loro rispetto. In particolare le costruzioni vengono semplificate se sappiamo tangenti e punti di contatto. Vedremo che è particolarmente immediatamente se sono note tre tangenti ei loro rispettivi punti di contatto, ottenuto dalla definizione della conica da 5 dati e applicazione delle tecniche descritte determinare le tangenti e punti di tangenza.

Geometria proiettiva: Ottenere alberi conici da due coppie diametri polare coniugati

A assi conici sono tali coniugati diametri polare ortogonali fra.

Ricordiamo che due diametri coniugati polari, necessariamente passare per il centro O del conica, sono i due punti non idonei polari (situato all'infinito) che sono coniugati, vale a dire, polare di ciascuno di questi punti contiene altri.

Queste coppie di elementi determinano un'involuzione di diametri (polare) Coniugati saranno definiti quando due coppie di travi conoscono e loro omologhi.

Conica definita dai due fuochi e tangente

Abbiamo risolto la determinazione di una conica definita dai due punti fuochi e focale dalla circonferenza del conica.

Un problema utilizzando concetti identici sta determinando una nota conica suoi fuochi e loro tangenti. Vedremo questo problema, nel caso di un ellisse.

Conica definita dai due fuochi e un punto

Uno de los primeros problemas que podemos resolver basándonos en la definición de cónica comolugar geométrico de los centros de circunferencias que pasando por un punto fijo (foco) che sono tangenti ad una circonferenza (circunferencia focal de centro el otro foco)” es el de determinación de la cónica a partir de sus dos focos y un punto.

La definición clásica quedará determinada en cuanto se obtengan los vértices A1 y A2 de la cónica.

Conica come Locus Centri circonferenze tangenti

Abbiamo visto che lo studio della conica può essere fatto da diversi approcci geometrici. In particolare,, per iniziare ad analizzare conica che abbiamo definito come il luogo di ellisse, abbiamo detto che:

Ellisse è il luogo dei punti in un piano la cui somma delle distanze da due punti fissi, chiamati Faretti, Ha un valore costante.

Questa definizione metrica di questa curva ci permette di affrontare importante studio relativo alle tangenti circonferenze, noto come “Problema de Apolonio” in una delle sue versioni. Quando ci avviciniamo allo studio della parabola o di un'iperbole ritorno di riformulare il problema di generalizzare questi concetti e ridurre i problemi “problema fondamentale delle tangenti nel caso rettilineo”, o el “problema fondamentale delle tangenti nel caso circonferenza”, vale a dire, determinare una circonferenza di un “Haz corradical” una condizione di tangenza.

Conica : Ellisse come locus

El estudio de las cónicas se puede realizar desde diferentes enfoques geométricos. Uno de las análisis más usado es el que las determina a partir de secciones planas en un cono de revolución.

A partir de esta definición es posible inferir propiedades métricas de estas curvas, además de nuevas definiciones de las mismas.

Geometria proiettiva: Coniugato diametri polari

Abbiamo visto la definizione di diametri coniugati polari, dato per analizzare il concetto di direzioni coniugate:

Coniugato diametri polari: Essi sono punto improprio coniugati due polar.
Vediamo come noi possiamo riguardare questo concetto con autopolar del triangolo visto in involuzioni in serie di secondo ordine.

Geometria proiettiva: Intersezione di diritto e rastremata

La definizione proiettiva della conica ha permesso di iniziare a risolvere i problemi classici di identificazione di nuovi elementi della conica (nuovi punti e tangenti in loro), e trovare l'intersezione con una linea o una tangente da un punto esterno. Questi problemi possono essere risolti con vari metodi più o meno complessi e percorsi concettualmente più o meno laboriose.

Vediamo ora come determinare i due possibili punti di intersezione di una riga con un cono definito da cinque punti.

Geometria proiettiva: Serie Cumulo di secondo ordine

Quando la base di una serie è una serie conica è secondo ordine.

Come nel caso della serie del primo ordine quando la serie sovrapposizione stavano definendo, possiamo stabilire proyectividades tra due insiemi di secondo ordine con la stessa base (in questo caso una conica).

Geometria proiettiva: Definizione del proiettiva conica

Curve coniche, ulteriore trattamento della metrica basata sui concetti di tangenza, avere un trattamento proiettivo che si basa sui concetti di serie e di fasci proiettivi.

Vedremo due definizioni di conica adattate alle “Punti mondiali” o al “mondo del diritto” secondo l'interesse, in quello che viene definito come le definizioni “punto” gli “tangenziale” delle curve coniche.