PIZiadasgráficas

PIZiadasgráficas

私の世界はインチです.

Categorías Métrica

投資: 角度条件要素の決意するためのテーブル精神体操

Ya hemos usado unaTabla de Gimnasia Mentalal estudiar la inversión: un conjunto de ejercicios que sirven para estimular el razonamiento, desarrollar y mantener la mente ágil, automatizar procesos de cálculo y análisis etc.

Nos proponemos ahora plantear una serie similar de problemas pero encaminados a obtener soluciones a problemas básicos de geometría. En este caso plantearemos la búsqueda de circunferencias que pasen por un punto dado y cumplan condiciones angulares respecto de otras dos circunferencias.

学習パスメトリック幾何学

Al abordar el estudio de una ciencia podemos seguir diferentes trayectorias que conducen al aprendizaje. 相互にリンク・チェーンの概念は、私たちは、抽象パターンの精神的な表現を生成することができます, 問題解決に彼らの同化とその後のアプリケーションを促進します.
これらのページでは、私たちの学生の教育における科学のこのブランチの基本のプログレッシブ混入の可能性のある戦略やシーケンスを要約2枚の画像が提案されています.

アポロニウスの問題 : CCC

変種の1に減らすことができるの名前の下に含まれる「Apolonioの問題」されている接線の問題のいずれかがそれらすべての最も基本的な研究を: 接線の根本的な問題 (PFT).

このケースでは、いわゆる「アポロニオ ccc ケース」を研究します。, すなわち, 3つの円の接線条件でデータが与えられる接線問題の場合 (CCC).

投資: 表精神体操処理要素

¿Qué es una tabla de gimnasia mental? Podemos decir que es un conjunto de ejercicios que sirven para estimular el razonamiento, desarrollar y mantener la mente ágil, automatizar procesos de cálculo y análisis etc.
En las asignaturas de geometría podemos proponer un problema y hacer ligeras variaciones sobre alguno de los datos. La variabilidad de un problema permitirá crear famílias de ejercicios en los que destacaremos uno o varios conceptos de interés.

ポイントを逆転. 10 取得するための構造 [私- メトリック]

Una recomendación que hago siempre a mis alumnos es que traten de resolver un mismo problema de formas diferentes, en lugar de hacer muchas veces los mismos problemas con enunciados casi similares.

Veremos un problema con enfoques métricos o proyectivos en cada caso.

En una de mis últimas clases planteamos la obtención del inverso de un punto, 中心部や電源への投資が知られています. 次のように提案した声明でした:

図中の四角以来, ここで一つの頂点を反転の中心であると反対の頂点が二重点であります, 点Aの逆を決定します (隣接する頂点).

円錐メトリック: 頭囲

頭囲

楕円を次のように定義しました。 “円の中心の軌跡, スポットライトを通過する, son tangentes a la circunferencia focal de centro el otro foco”.

Esta definición nos permite abordar el estudio de la cónica mediante la aplicación de los conceptos vistos al resolver los problemas de tangencias y, en particular, reduciéndolos al problema fundamental de tangencias.

Relacionaremos esta circunferencia con otra cuyo radio es la mitad del radio de la focal, y su centro es el de la cónica. Llamaremos a esta circunferencia “頭囲”.

軌跡センター円周接線として円錐

私たちは、円錐の研究は、異なる幾何学的なアプローチから作ることができることを見てきました. 特に, 円錐の分析を開始するために、我々は、楕円軌跡として定義されています, 私たちは、と言いました:

楕円は、2 つの固定点までの距離の合計が平面上の点の幾何学的軌跡です。, フォーカスと呼ばれる, 一定の値がある.

この重要な曲線のこの計量定義により、接円の曲線と関連付けることによってその研究に取り組むことができます。, として知られている “アポロニウスの問題” 一部のバージョンでは. 放物線や双曲線の研究に取り組むときは、これらの概念を一般化して問題を次の点に還元するために問題を再説明します。 “直線の場合の接線の基本的な問題”, o el “円周の場合の接線の基本的な問題”, すなわち, の円周を決定する “ハズ・コーラディカル” 接線条件付き.

計量幾何学 : 投資ビーム外周

La transformación mediante inversión de elementos agrupados en formas geométricas puede tener interés para usar la inversión como herramienta de análisis en problemas complejos. En este caso estudiaremos la transformación de loshaces de circunferencias corradicalesmediante diferentes inversiones que los transformen. Más adelante necesitaremos estas transformaciones para resolver el problema de “Apolonio” (circunferencia con tres restricciones de tangencia) o la “Generalización del problema de Apolonio” (circunferencias con tres restricciones angulares).

GeoGebraの持つダイナミックな幾何学的構造の堅牢性: 円の点の極性

El estudio de las disciplinas de la geometría clásica puede verse reforzado mediante la utilización de herramientas que permiten realizar construcciones susceptibles de ser cambiadas de forma dinámica: Construcciones variacionales.
La herramienta “Geogebra” nos servirá para ilustrar estos conceptos y demostrar la importancia del conocimiento detallado de las relaciones geométricas para asegurar la robustez de las construcciones que usamos en los razonamientos geométricos, として, たまに, algunas construcciones pueden perder su validez.

三角形の幾何学 [問題]

Hemos visto al estudiar el concepto de potencia o los teoremas del cateto y de la altura relaciones métricas entre segmentos.

En estas relaciones, junto con las del Teorema de Pitágoras se relacionan segmentos mediante formas cuadráticas que también podemos interpretar como áreas (producto de dos longitudes)