PIZiadas gráficas

PIZiadas gráficas

Mi mundo es la imagen.

Categorías superpuestas

Método de la falsa posición. Aplicación de series superpuestas de segundo orden.

Los modelos teóricos de la geometría proyectiva se pueden utilizar proponiendo problemas que no sean de aplicación directa. Tendremos que “vestir” por lo tanto los ejercicios para inferir en el alumno un mayor análisis y un tratamiento transversal del conocimiento: ¿Puedo aplicar lo aprendido para resolver este problema?.
Tras analizar en detalle las operaciones con series superpuestas de segundo orden, vamos a ver un ejemplo de aplicación que no consiste en obtener nuevas tangentes o puntos de tangencia de una cónica.

Geometría proyectiva: Involución en series superpuestas de segundo orden : Eje de Involución

Las transformaciones involutivas son aplicaciones biyectivas de gran interés para ser aplicadas en construcciones geométricas, ya que las simplifican notablemente.

Veremos cómo se define una involución en series de segundo orden, con base una cónica, comparándo el nuevo modelo de transformación con las series superpuestas de segundo orden estudiadas previamente.

¿Qué es una Involución en Geometría?

En geometría hablamos con mucha frecuencia con términos que, en algunos casos, no están suficientemente popularizados en el lenguaje cotidiano. Ello lleva a crear barreras en la interpretación de algunos conceptos sencillos.

Uno de los términos que más veces me han preguntado en clase es el de “Involución”. Definamos la involución.

¿Qué es una involución?

Geometría proyectiva: Aplicación de los haces superpuestos de segundo orden

Los conceptos proyectivos que hemos desarrollado al estudiar los haces superpuestos de segundo orden, cuya base es una cónica, permiten solucionar problemas de determinación de puntos de tangencia en las tangentes de una cónica definida mediante cinco tangentes o cinco restricciones mediante la combinación de tangentes y puntos con sus respectivas tangentes. Veremos la aplicación del Punto de Brianchon en este tipo de problemas

Geometría proyectiva: Haces superpuestos de segundo orden

Para estudiar la cónica tangencial, y en particular las proyectividades entre haces de segundo orden superpuestos sobre una misma curva, podemos apoyarnos en el estudio dual del realizado con las series superpuestas de segundo orden.

Geometría proyectiva: Aplicación de las series superpuestas de segundo orden

Los conceptos proyectivos que hemos desarrollado al estudiar las series superpuestas de segundo orden, cuya base es una cónica, permiten solucionar problemas de determinación de tangentes en puntos de una cónica definida mediante cinco puntos o cinco restricciones mediante la combinación de puntos y tangentes con sus respectivos puntos de tangencia.

Geometría métrica: Lugares geométricos. Arco capaz : Problema II

Las técnicas de solución de problemas basadas en la intersección de lugares geométricas se suelen asociar a problemas sencillos de la geometría clásica.

En estos casos es el planteamiento de la solución lo que entraña la mayor complejidad, ya que los lugares geométricos derivados suelen ser elementos geométricos sencillos.
Determinar un punto P desde el que se observe bajo el mismo ángulo a los tres lados de un triángulo ABC.

Geometría métrica: Lugares geométricos. Solución I (Selectividad 2014 – B1)

Vamos a resolver el problema de determinar un cuadrado, cuyos vértices se encuentran sobre elementos geométricos dados.
En particular fijaremos los correspondientes a una de sus diagonales sobre una recta, otro de los vértices en una recta diferente y el cuarto vértice sobre una circunferencia.

Geometría métrica: Lugares geométricos. Problema I (Selectividad 2014 – B1)

Los problemas básicos de geometría métrica tienen una especial belleza. Son adecuados para introducir a los alumnos en el arte del análisis en esta disciplina.

Uno de los problemas propuestos en el examen de Selectividad de Septiembre de 2014 plantea la obtención de una figura geométrica simple, un cuadrado, cuyos vértices se encuentran sobre elementos geométricos dados.

Molecular Flipbook Toolkit

Las animaciones por ordenador se usan principalmente para crear películas o cortos de animación que sirven para entretenernos. También son una poderosa herramienta que dan soporte a la publicidad en general.

Una interesante iniciativa científica se apoya en herramientas gráficas de edición tridimensional, en particular en el motor de juegos de Blender, para desarrollar una metodología de simulación y comunicación de procesos biológicos a nivel molecular.
Molecular Flipbook es una nueva herramienta “opensource” desarrollada aprovechando software libre para dotar a los científicos y educadores de una herramienta específica de animación a partir de moléculas básicas: las proteinas. Estos objetos pueden obtenerse a partir de los bancos de proteinas existentes en la actualidad.

Cómo beneficia a nuestro cerebro tocar un instrumento [ TED ]

TED es sinónimo de calidad. Sus amenas charlas nos muestran, de la mano de los mejores especialistas, la actualidad del conocimiento en sus diferentes disciplinas.
En esta ocasión se ha sustituido la charla de un orador en directo por una animación con audio en la que podemos descubrir los beneficios del aprendizaje y la interpretación musical.