PIZiadas gráficas

PIZiadas gráficas

Mi mundo es la imagen.

Categorías Ciencia

Línea de máxima pendiente

Al estudiar la verdadera magnitud de una recta vimos que podíamos calcular a su vez el ángulo de esta recta respecto de un plano de proyección, es decir, su pendiente.

En un plano podemos determinar infinitas rectas con diferente dirección contenidas en el mismo. Una de estas rectas formará la máxima condición angular respecto del plano de proyección.

Eje proyectivo de dos series [Interactivo] [Geogebra]

Las construcciones de geometría proyectiva realizadas con herramientas que permitan analizar sus invariantes son de gran utilidad para el estudio de esta disciplina de la Expresión Gráfica. Veremos una de estas construcciones realizada con el software “GeoGebra”, en particular la que permite determinar el eje proyectivo de dos series proyectivas.

Geometría del triángulo rectángulo [Problema]

Hemos visto al estudiar el concepto de potencia o los teoremas del cateto y de la altura relaciones métricas entre segmentos.

En estas relaciones, junto con las del Teorema de Pitágoras se relacionan segmentos mediante formas cuadráticas que también podemos interpretar como áreas (producto de dos longitudes)

Cónicas : Elipse como lugar geométrico

El estudio de las cónicas se puede realizar desde diferentes enfoques geométricos. Uno de las análisis más usado es el que las determina a partir de secciones planas en un cono de revolución.

A partir de esta definición es posible inferir propiedades métricas de estas curvas, además de nuevas definiciones de las mismas.

El problema del centro de giro

Un giro en el plano está determinado por su centro (de giro) y el ángulo girado. Esto es equivalente a definir tres datos simples, dos para el centro (coordenadas “x” e “y”) y uno para el valor del ángulo expresado en grados en cualquiera de los tres sistemas de unidades que usamos, grados centesimales, sexagesimales y radianes.

Normalmente solemos resolver en geometría muchos problemas directos en los que se realizan giros. Nos dan una figura y nos solicitan que, con un cierto centro, la giremos un ángulo determinado. Menos común es plantear el problema inverso.

Una pieza curiosa de dibujo técnico

Uno de los ejercicios clásicos que se inician en el bachillerato es el de la obtención de un modelo tridimensional a partir de dos o más vistas dadas de un objeto.

Los objetos o piezas iniciales suelen ser elementales y compuestos por superficies planas. En general el espacio que ocupan se limita al de un pequeño ortoedro.

Mediante este ejercicio se estimula la denominada “visión espacial” del alumno, buscando que aprenda a “leer” y “escribir” gráficamente la representación de volúmenes.

El problema del tapón con tres formas

Uno de los primeros problemas que planteo en mis clases es el que denomino “El tapón con tres formas”.

Sirve de introducción a la geometría descriptiva y obliga a hacer un análisis espacial de gran interés para la formación de los alumnos.

El problema consiste en determinar un tapón que sirva para tapar tres agujeros que hemos realizado en una caja de madera.

Sistema Diédrico: Rectas de un plano paralelas a los de proyección

Dentro de la categoría denominada “rectas notables” del plano se encuentran las que son paralelas a los planos de proyección diédricos. Estas rectas son de gran utilidad en la operatividad que vamos a desarrollar en este sistema de representación.

Sistema Diédrico: Teorema de las tres perpendiculares

Uno de los teoremas más importantes de la geometría descriptiva es el denominado “Teorema de las tres perpendiculares”, que establece una relación entre dos rectas perpendiculares cuando una de ellas es paralela a un plano de proyección.

Sistema Diédrico: Proyección de puntos del plano

¿Sabrías obtener a partir una proyección de un punto perteneciente a un plano otra proyección sobre el plano diédrico que la completa? Por ejemplo, si nos dan la proyección horizontal y la vertical de un plano y un punto en esta última ¿Cómo determinaríamos la proyección sobre el plano horizontal?

Sistema Diédrico: Proyección del plano

Un plano queda determinado por tres puntos no alineados, por lo que añadiendo un nuevo punto a las proyecciones de una recta podremos definirlo. En este caso podremos dar al menos dos cotas relativas sobre cada plano de proyección con objeto de independizar las proyecciones de dichos planos soporte de la representación. Aprenderemos a representar planos y elementos que los pertenezcan.